Skip to main content

Advertisement

Log in

Direct in situ assembly of bimetallic Co–Ni hydroxide/polyaniline-modified reduced graphene oxide nanocomposite for asymmetric flexible supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a novel hybrid nanocomposite of bimetallic Co–Ni hydroxide and polyaniline-modified partially reduced graphene oxide (PRGO) was assembled via in situ growth route for supercapacitor application. A series of characterizations demonstrated that large quantities of bimetallic Co–Ni hydroxide nanosheets could longitudinally grow on the surface of PRGO substrate and intercross together, forming a hierarchical honeycomb-like micro/nanostructure array. As-assembled CoNi(OH)2/PRGO nanocomposite showed a much higher specific capacitance of 2760 ± 160 F g−1 at 1.0 A g−1 in three-electrode measurements, in comparison with pristine bimetallic Co–Ni hydroxide, Co(OH)2/PRGO, and Ni(OH)2/PRGO reference electrodes, which originated from the synergy effect between component units and unique three-dimensional conductive porous framework of nanocomposite, thereby greatly promoting the redox processes of metal ions and facilitating the ion diffusion between the electrolyte and the electrode, as well as the electron transfer. Furthermore, after 1000 charge–discharge cycles, as-assembled nanocomposite electrode possessed good cycling stability, along with a high 93.2% retention level of capacitance at 10 A g−1. An asymmetric flexible all-solid-state supercapacitor device was equipped with poly (vinyl alcohol) film as the solid electrolyte, and as-assembled CoNi(OH)2/PRGO as the positive electrode delivered a 74.84 ± 1.46 wh kg−1 energy density and a 374.34 ± 0.15 w kg−1 power density at 0.5 A g−1, indicating good supercapacitor performance for energy storage and applications in flexible and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Omanda, T. Brousse, C. Marhic, D. Schleich, Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiOx protective coating. J. Electrochem. Soc. 151, A922–A929 (2004)

    CAS  Google Scholar 

  2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  Google Scholar 

  3. M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananona, S. Luanwuthia, J. Limtrakulb, High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109–116 (2013)

    CAS  Google Scholar 

  4. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    CAS  Google Scholar 

  5. W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8, 9531–9541 (2014)

    CAS  Google Scholar 

  6. Z. Tang, C. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/Carbon nanotube electrodes. Adv. Funct. Mater. 22, 1272–1278 (2012)

    CAS  Google Scholar 

  7. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    CAS  Google Scholar 

  8. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  Google Scholar 

  9. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu et al., In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018)

    CAS  Google Scholar 

  10. K. Le, M. Gao, W. Liu, J. Liu, Z. Wang, F. Wang et al., MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim. Acta 323, 134826 (2019)

    CAS  Google Scholar 

  11. J. Qi, D. Chen, W. Wang, Y. Sui, Y. He, Q. Meng et al., Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J. Mater. Sci.: Mater Electron. 30, 9877–9887 (2019)

    CAS  Google Scholar 

  12. J. Ge, J. Wu, B. Ye, L. Fan, J. Jia, Hollow rod-like hybrid Co2CrO4/Co1−xS for high-performance asymmetric supercapacitor. J. Mater. Sci.: Mater Electron. 30, 1045–1055 (2019)

    CAS  Google Scholar 

  13. K. Jia, X. Zhuang, B. Cheng, S. Shi, Z. Shi, B. Zhang, Solution blown aligned carbon nanofiber yarn as supercapacitor electrode. J. Mater. Sci.: Mater Electron. 24, 4769–4773 (2013)

    CAS  Google Scholar 

  14. R. Hu, J. Zhao, R. Jiang, J. Zheng, Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor. J. Mater. Sci.: Mater Electron. 28, 14568–14574 (2017)

    CAS  Google Scholar 

  15. A.H. Siddique, S.W. Bokhari, R. Butt, S. Jiang, W. Chen, X. Zhou, Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. J. Mater. Sci. 55, 309–318 (2020)

    CAS  Google Scholar 

  16. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006)

    CAS  Google Scholar 

  17. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)

    CAS  Google Scholar 

  18. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O.S. Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    CAS  Google Scholar 

  19. G.A. Snook, P. Kaoand, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)

    CAS  Google Scholar 

  20. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 195, 3041–3045 (2010)

    CAS  Google Scholar 

  21. J. Zhang, L. Dong, C. Xu, J. Hao, F. Kang, J. Li, Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. J. Mater. Sci. 52, 5788–5798 (2017)

    CAS  Google Scholar 

  22. J. Yu, F. Xie, Z. Wu, T. Huang, J. Wu, D. Yan et al., Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim. Acta 259, 968–974 (2018)

    CAS  Google Scholar 

  23. W.H. Chen, Y.F. Yang, H.X. Shao, J. Fan, Tunable electrochemical properties brought about by partial cation exchange in hydrotalcite-like Ni-Co/Co-Ni hydroxide nanosheets. J. Phys. Chem. C 112, 17471–17477 (2008)

    CAS  Google Scholar 

  24. V. Gupta, S. Gupta, N. Miura, Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 175, 680–685 (2008)

    CAS  Google Scholar 

  25. X. Wang, A. Sumboja, M. Lin, J. Yan, P.S. Lee, Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4, 7266–7272 (2012)

    CAS  Google Scholar 

  26. X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni-Co binary hydroxide system. J. Power Sources 238, 150–156 (2013)

    CAS  Google Scholar 

  27. Y. Tang, Y. Liu, W. Guo, S. Yu, F. Gao, Floss-like Ni-Co binary hydroxides assembled by whisker-like nanowires for high-performance supercapacitor. Ionics 21, 1655–1663 (2015)

    CAS  Google Scholar 

  28. G. Chen, S.S. Liaw, B.S. Li, Y. Xua, M. Dunwell, S.G. Deng, H.Y. Fan, H.M. Luo, Microwave-assisted synthesis of hybrid CoxNi1-x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor. J. Power Sources 251, 338–343 (2014)

    CAS  Google Scholar 

  29. Q. Wang, S. Liu, H. Sun, Q. Lu, Synthesis of a flower-like Co-doped Ni(OH)2 composite for high-performance supercapacitors. RSC Adv. 5, 48181–48186 (2015)

    CAS  Google Scholar 

  30. D.D. Xia, H.C. Chen, J.J. Jiang, L. Zhang, Y.D. Zhao, D.Q. Guo, J.G. Yu, Facilely synthesized a phase nickel-cobalt bimetallic hydroxides: Tuning the composition for high pseudocapacitance. Electrochim. Acta 156, 108–114 (2015)

    CAS  Google Scholar 

  31. L. Huang, D.C. Chen, Y. Ding, S. Feng, Z.L. Wang, M.L. Liu, Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013)

    CAS  Google Scholar 

  32. M.P. Umakant, S.S. Ji, B.K. Sachin, C.L. Su, G.P. Hyung, V.G. Kishor, J.H. Kim, C.J. Seong, Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Int. 6, 2450–2458 (2014)

    Google Scholar 

  33. Y. Bai, W.Q. Wang, R.R. Wang, J. Sun, L. Gao, Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. J. Mater. Chem. A 3, 12530–12538 (2015)

    CAS  Google Scholar 

  34. L.L. Zhang, S.S. Song, H.Y. Shi, One-pot methanol-mediated solvothermal synthesis of 3D porous Co-doped α-Ni(OH)2/RGO nanosheets as a high-performance pseudo-capacitance electrode. J. Alloys Compd. 751, 69–79 (2018)

    CAS  Google Scholar 

  35. H.N. Ma, J. He, D.B. Xiong, J.S. Wu, Q.Q. Li, V. Dravid, Y.F. Zhao, Nickel cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl Mater. Int. 8, 1992–2000 (2016)

    CAS  Google Scholar 

  36. D. Ghosh, S. Giri, M. Mandal, C.K. Das, High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Adv. 4, 26094–26101 (2014)

    CAS  Google Scholar 

  37. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswamid, Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5, 31039–31048 (2015)

    CAS  Google Scholar 

  38. A.V. Talyzin, G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, D. Wei, D. Cotton, A. Opitz, E. Moons, Brodie vs Hummers graphite oxides for preparation of multi-layered Materials. Carbon 115, 430–440 (2017)

    CAS  Google Scholar 

  39. P. Xiong, Y. Fan, Design and synthesis of ternary Ferrite/Graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J. Power Sources 245, 937–946 (2014)

    CAS  Google Scholar 

  40. X. Yan, J. Chen, J. Yang, P. Miele, Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl. Mater. Int. 2, 2521–2529 (2010)

    CAS  Google Scholar 

  41. S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    CAS  Google Scholar 

  42. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)

    CAS  Google Scholar 

  43. J. Xu, K. Wang, S.Z. Zu, B.H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010)

    CAS  Google Scholar 

  44. Ü. Ceylan, G.Ö. Tarı, H. Gökce, E.A. Gokce, Spectroscopic (FT–IR and UV–Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl) methylidene] aniline. J. Mol. Struct. 1110, 1–10 (2016)

    CAS  Google Scholar 

  45. M. Aghazadeh, H.M. Shiri, A.-A.M. Barmi, Uniform β-Co (OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl. Surf. Sci. 273, 237–242 (2013)

    CAS  Google Scholar 

  46. L. Zhang, F. Li, D.G. Evans, X. Duan, Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Mater. Chem. Phys. 87(2–3), 402–410 (2004)

    CAS  Google Scholar 

  47. G. Irmer, Zum Einfluss der Apparatefunktion auf die Bestimmung von streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Exp. Tech. Phys. 33, 501–506 (1985)

    CAS  Google Scholar 

  48. J.W. Qin, M.H. Cao, N. Li, C.W. Hu, Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J. Mater. Chem. 21, 17167–17174 (2011)

    CAS  Google Scholar 

  49. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    CAS  Google Scholar 

  50. M. Jana, P. Khanra, N.C. Murmu, P. Samanta, J.H. Lee, T. Kuila, Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material. Phys. Chem. Chem. Phys. 16, 7618–7626 (2014)

    CAS  Google Scholar 

  51. Z. Li, X. Li, L. Xiang, X. Xie, X. Li, D.-R. Xiao et al., Three-dimensional hierarchical nickel-cobalt-sulfide nanostructures for high performance electrochemical energy storage electrodes. J. Mater. Chem. A. 4, 18335–18341 (2016)

    CAS  Google Scholar 

  52. E. Martono, J.M. Vohs, Support effects in cobalt-based ethanol steam reforming catalysts: reaction of ethanol on Co/CeO2/YSZ (100) model catalysts. J. Catal. 291, 79–86 (2012)

    CAS  Google Scholar 

  53. M.M. Natile, A. Glisenti, Surface reactivity of NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: interaction with methanol. J. Mol. Catal. A 217, 175–184 (2004)

    CAS  Google Scholar 

  54. C.W. Huang, H.C. Wu, W.H. Lin, Y.Y. Li, Temperature effect on the formation of catalysts for growth of carbon nanofibers. Carbon 47, 795–803 (2009)

    CAS  Google Scholar 

  55. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windl, Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116–8121 (1999)

    CAS  Google Scholar 

  56. D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl. Mater. Inter. 6, 200–209 (2013)

    Google Scholar 

  57. Y. Geng, S.J. Wang, J.K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336, 592–598 (2009)

    CAS  Google Scholar 

  58. D.W. Wang, B. Guan, Y. Li, D.D. Li, Z.Y. Xu, Y.F. Hu, Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors. J. Alloys Compd. 737, 238–247 (2018)

    CAS  Google Scholar 

  59. Z. Chen, Y. Chen, C. Zuo, S. Zhou, A.G. Xiao, A.X. Pan, Hydrothermal synthesis of porous Co(OH)2 nanoflake array film and its supercapacitor application. Bull. Mater. Sci. 36, 239–244 (2013)

    CAS  Google Scholar 

  60. J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. J. Mater. Chem. A 2, 1022–1031 (2014)

    CAS  Google Scholar 

  61. G.Y. Zhou, T.R. Xiong, S.J. He, Y.H. Li, Y.M. Zhu, H.Q. Hou, Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. J. Power Sources 317, 57–64 (2016)

    CAS  Google Scholar 

  62. M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, J.H. Lee, Growth of Ni-Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 4, 2188–2197 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded through the National Natural Science Foundation of China (Grant Nos. 21991102, 21521005; 21776017) and the National Key Research Development Program of China (Grant Nos. 2016YFB0601303 and 2016YFB0301602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Yang or Guoli Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, Y., Yang, L. et al. Direct in situ assembly of bimetallic Co–Ni hydroxide/polyaniline-modified reduced graphene oxide nanocomposite for asymmetric flexible supercapacitor electrode. J Mater Sci: Mater Electron 31, 6467–6478 (2020). https://doi.org/10.1007/s10854-020-03202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03202-3

Navigation