Skip to main content
Log in

Improved performance of cadmium sulfide-sensitized solar cells by interface engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The solar cells have been fabricated using cadmium sulfide (CdS) as a sensitizer by the chemical bath deposition (CBD) technique on the mesoporous TiO2 substrate. The different device configurations with titanium(IV) tetrachloride (TiCl4) treatment, TiO2 compact layer, with mesoporous TiO2 along with CdS sensitizer layer, were investigated. The CdS film morphology, optical properties, and crystalline structure of CdS film were studied. It was observed that TiCl4 treatment helped in reducing the recombination at the interfaces between conducting glass and TiO2 compact layer enabling higher carrier transport. Power conversion efficiency of 1.44% is achieved using a TiCl4 treatment on TiO2 compact layer with TiO2 mesoporous/CdS device under illumination of 100 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. O'regan, M. Grätzel, Nature 353, 737 (1991)

    Article  CAS  Google Scholar 

  2. M.S. Ahmad, A. Pandey, N.A. Rahim, Renew. Sustain. Energy Rev. 77, 89 (2017)

    Article  Google Scholar 

  3. B. Pradhan, S.K. Batabyal, A.J. Pal, Sol. Energy Mater. Sol. Cells 91, 769 (2007)

    Article  CAS  Google Scholar 

  4. J.A. Anta, E. Guillen, R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012)

    Article  CAS  Google Scholar 

  5. F. Sauvage, F. Di Fonzo, A. Li Bassi et al., Nano Lett. 10, 2562 (2010)

    Article  CAS  Google Scholar 

  6. C.-Y. Chen, M. Wang, J.-Y. Li et al., ACS Nano 3, 3103 (2009)

    Article  CAS  Google Scholar 

  7. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  Google Scholar 

  8. S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, Y.-M. Yang, Appl. Phys. Lett. 90, 143517 (2007)

    Article  Google Scholar 

  9. Q. Shen, D. Arae, T. Toyoda, J. Photochem. Photobiol. A 164, 75 (2004)

    Article  CAS  Google Scholar 

  10. J. Yang, X. Zhong, J. Mater. Chem. A 4, 16553 (2016)

    Article  CAS  Google Scholar 

  11. X. Guo, J. Gao, Z. Zhang et al., Mater. Today Energy 5, 320 (2017)

    Article  Google Scholar 

  12. J. Sun, H. Guo, L. Zhao, S. Wang, J. Hu, B. Dong, Int. J. Electrochem. Sci. 12, 7941 (2017)

    Article  CAS  Google Scholar 

  13. W. Lee, S.K. Min, V. Dhas, S.B. Ogale, S.-H. Han, Electrochem. Commun. 11, 103 (2009)

    Article  CAS  Google Scholar 

  14. M. Hossain, S. Biswas, T. Takahashi, Thin Solid Films 518, 1599 (2009)

    Article  CAS  Google Scholar 

  15. A. Sedghi, H.N. Miankushki, Jpn. J. Appl. Phys. 52, 075002 (2013)

    Article  Google Scholar 

  16. J. Kim, H. Choi, C. Nahm et al., J. Power Sources 196, 10526 (2011)

    Article  CAS  Google Scholar 

  17. J. Lungu, G. Socol, G.E. Stan et al., Nanomaterials 9, 746 (2019)

    Article  CAS  Google Scholar 

  18. J.-Y. Hwang, S.-A. Lee, Y.H. Lee, S.-I. Seok, ACS Appl. Mater. Interfaces 2, 1343 (2010)

    Article  CAS  Google Scholar 

  19. H. Choi, C. Nahm, J. Kim et al., Curr. Appl. Phys. 12, 737 (2012)

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  21. B.C. O'Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, J. Phys. Chem. C 111, 14001 (2007)

    Article  CAS  Google Scholar 

  22. X. Weiwei, D. Songyuan, H. Linhua et al., Plasma Sci. Technol 9, 556 (2007)

    Article  Google Scholar 

  23. J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111, 8092 (2007)

    Article  CAS  Google Scholar 

  24. Y. Liu, X. Sun, Q. Tai et al., J. Power Sources 196, 475 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BP would like to thank to Department of Science and Technology (Project No.-SB/FTP/PS-148/2013, and SR/S2/RJN-55/2012) for financial support. The authors are also thankful to Ministry of Human Resources and Development (MHRD) for their financial support (project No. F.No. 5-5/2014-TS.Vll). AM would also like to thank MNRE for National Renewable Energy Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudev Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, A., Kumar, P. & Pradhan, B. Improved performance of cadmium sulfide-sensitized solar cells by interface engineering. J Mater Sci: Mater Electron 31, 6274–6278 (2020). https://doi.org/10.1007/s10854-020-03182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03182-4

Navigation