Skip to main content

Advertisement

Log in

Facile solvent deficient synthesis of mesoporous Co3O4 nanoparticles for electrochemical energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High surface area, mesoporous metal oxide nanoparticles play a significant role in the electrochemical charge storage applications. A facile solvent-deficient approach has been reported for synthesis of high surface area, mesoporous Co3O4 nanoparticles for the electrochemical energy storage. A precursor is obtained by grinding hydrated cobalt nitrate salt with ammonium bicarbonate for 25 min without addition of any true solvent. Further, the precursor is annealed at 300 ℃ to obtain Co3O4 from as prepared untreated precursor and after rinsing using deionized water. The XRD, Raman and FTIR spectra revealed the single-phase formation of Co3O4. SEM shows granular-type morphologies with two distinct size for two different samples. The BET analysis confirms mesoporous nature with specific surface area of 135 and 193 m2g−1 for samples obtained from untreated and rinsed precursors. The maximum specific capacitance of Co3O4 obtained from untreated and rinsed samples are 184 and 349 Fg−1. A very fewer equivalent series resistance of 2.24 Ω and 1.91 Ω has been observed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Dai, Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31–42 (2013)

    CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013)

    CAS  Google Scholar 

  3. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008–5048 (2014)

    CAS  Google Scholar 

  4. M. Li, P.W. Yuan, S.H. Guo, F. Liu, J.P. Cheng, Design and synthesis of Ni-Co and Ni-Mn layered double hydroxides hollow microspheres for supercapacitor. Int. J. Hydrogen Energy 42, 28797–28806 (2017)

    CAS  Google Scholar 

  5. R.R. Salunkhe, Y.H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, Y. Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem. Eur. J. 20, 13838–13852 (2014)

    CAS  Google Scholar 

  6. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    CAS  Google Scholar 

  7. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  Google Scholar 

  8. R.R. Bi, X.L. Wu, F.F. Gao, L.Y. Jiang, Y.G. Guo, L.J. Wan, Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C114, 2448–2451 (2010)

    Google Scholar 

  9. Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17, 2865–2869 (2006)

    CAS  Google Scholar 

  10. Q.Y. Liao, S.Y. Li, H. Cui, C. Wang, Vertically-aligned graphene@Mn3O4nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor. J. Mater. Chem. A 4, 8830–8836 (2016)

    CAS  Google Scholar 

  11. R.M. Kore, A.V. Thakur, B.Y. Fugare, B.J. Lokhande, Reagent ratio dependent physical properties and electrochemical performance of NiO nanoparticles synthesized using solvent deficient approach. AIP Conf. Proceed. 1942–1, 140069 (2018)

    Google Scholar 

  12. R.M. Kore, R.S. Mane, M. Naushad, M.R. Khan, B.J. Lokhande, Nanomorphology-dependent pseudocapacitive properties of NiO electrodes engineered through a controlled potentiodynamic electrodeposition process. RSC Adv. 6, 24478–24483 (2016)

    CAS  Google Scholar 

  13. S. Patil, S. Raut, R. Gore, B. Sankapal, One-dimensional cadmium hydroxide nanowires towards electrochemical supercapacitor. New J. Chem. 39, 9124–9131 (2015)

    CAS  Google Scholar 

  14. Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310–5317 (2015)

    CAS  Google Scholar 

  15. G.C. Li, X.N. Hua, P.F. Liu, Y.X. Xie, L. Han, Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor. Mater. Chem. Phys. 168, 127–131 (2015)

    CAS  Google Scholar 

  16. B.Y. Fugare, A.V. Thakur, R.M. Kore, B.J. Lokhande, Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor. AIP Conf. Proceed. 1942, 140010 (2018)

    Google Scholar 

  17. A.V. Thakur, B.J. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017)

    CAS  Google Scholar 

  18. C.C. Hu, C.M. Huang, K.H. Chang, Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J. Power Sources 185, 1594–1597 (2008)

    CAS  Google Scholar 

  19. L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, J. Jin, Layered α-Co(OH)2 nanoconesas electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 23, 2758–2764 (2013)

    CAS  Google Scholar 

  20. X. Xu, J. Shen, N. Li, M. Ye, Microwave-assisted in situ synthesis of cobalt nanoparticles decorated on reduced graphene oxide as promising electrodes for supercapacitors. Int. J. Hydrogen Energy 40, 13003–13013 (2015)

    CAS  Google Scholar 

  21. Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang, J.L. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 195, 1757–1760 (2010)

    CAS  Google Scholar 

  22. S.K. Jesudoss, J. Judith Vijaya, P. Iyyappa Rajan, K. Kaviyarasu, M. Sivachidambaram, L. John Kennedy, H.A. Al-Lohedan, R. Jothiramalingame, M.A. Munusamy, High performance multifunctional green Co3O4 spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro-aromatics and antibacterial potential. Photochem. Photobiol. Sci. 16, 766–778 (2017)

    CAS  Google Scholar 

  23. K. Kaviyarasu, A. Raja, P.A. Devarahan, Structural Elucidation and spectral characterization of Co3O4 nanoflakes. Spectrochim. Acta A 114, 586–591 (2013)

    CAS  Google Scholar 

  24. M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016)

    CAS  Google Scholar 

  25. S.J. Smith, B. Huang, S. Liu, Q. Liu, R.E. Olsen, J. Boerio-Goates, B.F. Woodfield, Synthesis of metal oxide nanoparticles via a robust “solvent-deficient” method. Nanoscale 7, 144–156 (2015)

    CAS  Google Scholar 

  26. R.M. Kore, B.J. Lokhande, Hierarchical mesoporous network of amorphous α—Ni(OH)2 for high performance supercapacitor electrode material synthesized from a novel solvent deficient approach. Electrochim. Acta 245, 780–790 (2017)

    CAS  Google Scholar 

  27. R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 725, 129–138 (2017)

    CAS  Google Scholar 

  28. G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113, 4357–4361 (2009)

    CAS  Google Scholar 

  29. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compound, 4th edn. (Chemical Industry Press, Beijing, 1991)

    Google Scholar 

  30. J.A. Gaddsden, Infrared Spectra of Minerals and Related Inorganic Compound, 1st edn. (Butterworth, London, 1975)

    Google Scholar 

  31. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (Academic Press, New York, 1971)

    Google Scholar 

  32. C. Sangwichien, G.L. Aranovich, M.D. Donohue, Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf. A 206, 313–320 (2002)

    CAS  Google Scholar 

  33. X. He, M. Yang, P. Ni, Y. Li, Z.-H. Liu, Rapid synthesis of hollow structured MnO2 microspheres and their capacitance. Colloids Surf. A 363, 64–70 (2010)

    CAS  Google Scholar 

  34. G. Sundara, B. Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, S. Anandan, Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21, 1933–1938 (2014)

    Google Scholar 

  35. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 56, 4985–4991 (2011)

    CAS  Google Scholar 

  36. V.V. Jadhav, R.M. Kore, N.D. Thorat, J.M. Yun, K.H. Kim, R.S. Mane, C. O’Dwyer, Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Mater. Res. Express 5, 125004 (2018)

    Google Scholar 

  37. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)

    CAS  Google Scholar 

  38. Z.B. Wen, Q.T. Qu, Q. Gao, X.W. Zheng, Z.H. Hu, Y.P. Wu, Y.F. Liu, X.J. Wang, An activated carbon with high capacitance from carbonization of a resorcinol–formaldehyde resin. Electrochem. Commun. 11, 715–718 (2009)

    CAS  Google Scholar 

  39. G.T. Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C. MariaMagdalane, A.K.H. Bashird, M. Maazad, K. Kaviyarasu, Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surf. Interfaces 17, 100376 (2019)

    Google Scholar 

  40. C. Xiong, T. Li, Y. Zhu, T. Zhao, A. Dang, H. Li, X. Ji, Y. Shang, M. Khan, Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. J. Alloys Compd. 695, 1248–1259 (2017)

    CAS  Google Scholar 

  41. S.K. Meher, P. Justin, G. Ranga Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to IITBNF, IIT Bombay, for providing characterization facility under Indian Nanoelectronics Users Program (INUP) sponsored by Deity, Government of India. Authors are also thankful to the Research for Resurgence Foundation for the scientific discussion regarding the works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Lokhande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kore, R.M., Lokhande, B.J. Facile solvent deficient synthesis of mesoporous Co3O4 nanoparticles for electrochemical energy storage. J Mater Sci: Mater Electron 31, 6174–6184 (2020). https://doi.org/10.1007/s10854-020-03170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03170-8

Navigation