Skip to main content
Log in

Structural, microstructure, optical, and dielectric properties of Sr1.99M0.01SnO4 (M: La, Nd, Eu) Ruddlesden–Popper oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript deals with the structural and optical properties of Sr1.99M0.01SnO4 (M: La, Nd, Eu). The single phase of the compositions is prepared by a conventional ceramic route followed by calcination at 1000 °C for 8 h. The lattice parameters determined from Rietveld refinement indicate that it gradually increases with doping of La to Eu. Microstructural analysis of the samples has been analyzed using scanning electron microscopy (SEM) and found that Nd3+ and Eu3+ act as grain growth promoters and La3+ as grain growth inhibitor. However, energy-dispersive X-ray (EDX) analysis shows the compositional homogeneity of the surface of samples. The absorption spectrum of the samples suggests that it is optically active in the UV region but transparent from the visible to IR region. The direct and indirect bandgap values of the samples are follow similar trend as lattice parameters because of the lower ionic radii of dopant. Urbach energy of the samples has been calculated from absorption data, which gradually increases with the dopant concentration except for Nd3+. The dielectric constant and dissipation factor of the samples are found to be in the range of 167–240 and 0.01–0.68, respectively. By utilizing these optical states as a metastable state, it can be used in UV detector, semiconductor devices, and optoelectronic device applications. The dielectric properties of samples make it a promising candidate for high frequency-based devices and dielectric capacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.T. Fu, D. Visser, K.S. Knight, D.J.W. IJdo, Neutron powder diffraction study of phase transitions in Sr2SnO4. J. Solid State Chem. 177(11), 4081–4086 (2004)

    Article  CAS  Google Scholar 

  2. B.J. Kennedy, Neutron powder diffraction study of Sr2SnO4 and Ba2SnO4. Aust. J. Chem. 50(9), 917–920 (1997)

    Article  CAS  Google Scholar 

  3. B. Prijamboedi, S. Umar, F. Failamani, Electronic Structure and Optical Properties of Sr2SnO4 Studied with FP-LAPW Method in Density Functional Theory (vol. 030001, pp. 10–13, 2015)

  4. M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2013)

    Google Scholar 

  5. X. Zhou, X. Wang, J. Wen, Optical study of Sr2SnO4:Eu3+ phosphor. Opt. Int. J. Light Electron. Opt. 125(14), 3454–3456 (2014)

    Article  CAS  Google Scholar 

  6. C. Liu, Z. Zhou, Y. Zhang, Synthesis and luminescence properties of novel red-emitting Na2ZnSiO4:Eu3+ phosphor with intense 5D07F4 transition and high quantum yield. J. Alloys Compd. 787, 1158–1162 (2019)

    Article  CAS  Google Scholar 

  7. X. Xu, Y. Wang, Y. Gong, W. Zeng, Y. Li, Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+phosphor. Opt. Express 18(16), 16989–16994 (2010)

    Article  CAS  Google Scholar 

  8. S. Kamimura, H. Yamada, C.N. Xu, Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+(n = 1, 2, ∞) with perovskite-related structures. Appl. Phys. Lett. 101(9), 091113 (2012)

    Article  Google Scholar 

  9. S. Kamimura, C. Xu, H. Yamada, N. Terasaki, M. Fujihala, Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging. Jpn. J. Appl. Phys. 53(9), 092403 (2014)

    Article  Google Scholar 

  10. U. Kumar, D. Yadav, A.K. Thakur, K.K. Srivastav, S. Upadhyay, Investigation on phase formation of Sr2SnO4 and effect of La-doping on its structural and optical properties. J. Therm. Anal. Calorim. 135(4), 1–13 (2018)

    Google Scholar 

  11. J. Ansaree, S. Upadhyay, Electrical characterization of porous La-doped BaSnO3 using impedance spectroscopy. Ionics 21(10), 2825–2838 (2015)

    Article  CAS  Google Scholar 

  12. M. Tyagi, M. Tomar, V. Gupta, Optical properties of NiO thin films : a potential material for optoelectronic devices. In Advanced Materials Research (Vol. 488, pp. 103–108). Trans Tech Publications Ltd.

  13. W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, vol. 23, 2nd edn. (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  14. D. Lee, H.N. Lee, Controlling oxygen mobility in Ruddlesden-Popper oxides. Materials 1, 1–22 (2017)

    Google Scholar 

  15. B. Liu, L. Li, X.Q. Liu, X.M. Chen, Srn+1TinO3n+1 (n=1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J. Am. Ceram. Soc. 100(2), 496–500 (2017)

    Article  CAS  Google Scholar 

  16. H. Koc, S. Palaz, G. Ugur, A.M. Mamedov, E. Ozbay, Electronic, mechanical, and optical properties of Ruddlesden-Popper perovskite sulfides: first principle calculation. Ferroelectrics 535(1), 142–151 (2018)

    Article  CAS  Google Scholar 

  17. A. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7(2), 81–91 (2013)

    Article  CAS  Google Scholar 

  18. G.H. Khorrami, A. Khorsand Zak, A. Kompany, R. Yousefi, Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods. Ceram. Int. 38(7), 5683–5690 (2012)

    Article  CAS  Google Scholar 

  19. H. Jaffe, Piezoelectric ceramics. J. Am. Ceram. Soc. 41(11), 494–498 (1958)

    Article  CAS  Google Scholar 

  20. A. Kareiva et al., Luminescence properties of Sm3+-doped alkaline earth ortho-stannates. Opt. Mater. (Amst) 36(7), 1146–1152 (2014)

    Article  Google Scholar 

  21. S. Sharma, M.M. Singh, U.S. Rai, K.D. Mandal, Rationalization of dielectric properties of nano-sized iron doped yttrium copper titanate using impedance and modulus studies. Mater. Sci. Semicond. Process. 31, 720–727 (2015)

    Article  CAS  Google Scholar 

  22. R. Reisfeld, Spectroscopy of Rare Earth Ions (Springer, Dordrecht, 2005), pp. 77–78

    Google Scholar 

  23. B. Muthukutty, R. Karthik, S.M. Chen, M. Abinaya, Designing novel perovskite-type strontium stannate (SrSnO3) and its potential as an electrode material for the enhanced sensing of anti-inflammatory drug mesalamine in biological samples. New J. Chem. 43(31), 12264–12274 (2019)

    Article  CAS  Google Scholar 

  24. M. Usman, Effect of vanadium doping on structural, magnetic and optical properties of ZnO nanoparticles. Appl. Surf. Sci. 255(20), 8506–8510 (2016)

    Google Scholar 

  25. M.I.M. Zamratul, A.W. Zaidan, A.M. Khamirul, M. Nurzilla, S.A. Halim, Formation, structural and optical characterization of neodymium doped-zinc soda lime silica based glass. Results Phys. 6, 295–298 (2016)

    Article  Google Scholar 

  26. A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, Structural and optical characterization of BaSnO3 nanopowder synthesized through a novel combustion technique. J. Alloys Compd. 509(5), 1830–1835 (2011)

    Article  CAS  Google Scholar 

  27. A.S. Ahmed, M.L. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131(1), 1–6 (2011)

    Article  CAS  Google Scholar 

  28. H.B. Fan et al., Investigation of oxygen vacancy and interstitial oxygen defects in zno films by photoluminescence and x-ray photoelectron spectroscopy. Chin. Phys. Lett. 24, 2108 (2007)

    Article  CAS  Google Scholar 

  29. P.R. Sagdeo, P. Singh, H.M. Rai, R. Kumar, Optical bandgap and bowing parameter for Fe doped LaGaO3, pp. 1–16.

  30. A.M. Badr, H.A. Elshaikh, I.M. Ashraf, Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. J. Mod. Phys. 11, 12–25 (2011)

    Article  Google Scholar 

  31. S. Upadhyay, O. Parkash, D. Kumar, Dielectric relaxation and variable-range-hopping conduction in BaSn1xCrxO3 system. J. Electroceram. 18(1–2), 45–55 (2007)

    Article  CAS  Google Scholar 

  32. W. Ge, C. Zhu, H. An, Z. Li, G. Tang, D. Hou, Sol–gel synthesis and dielectric properties of Ruddlesden–Popper phase Srn+1TinO3n+1 (n ¼ 1, 2, 3, 1). Ceram. Int. 40(1), 1569–1574 (2014)

    Article  CAS  Google Scholar 

  33. B. Liu, X.Q. Liu, X.M. Chen, Sr2LaAlTiO7: a new Ruddlesden-Popper compound with excellent microwave dielectric properties. J. Mater. Chem. C 4, 1720–1726 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Head, Department of Physics IIT (BHU) for providing the facility for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Upadhyay, S. Structural, microstructure, optical, and dielectric properties of Sr1.99M0.01SnO4 (M: La, Nd, Eu) Ruddlesden–Popper oxide. J Mater Sci: Mater Electron 31, 5721–5730 (2020). https://doi.org/10.1007/s10854-020-03140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03140-0

Navigation