Skip to main content

Advertisement

Log in

Effect of Co content on [Ca2CoO3−δ]0.62[CoO2] thermoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of thermoelectric materials, which is a clean energy conversion method, can realize the direct conversion of thermal energy and electrical energy. Ceramic samples of the [Ca2CoO3−δ]0.62[CoO2] system with different contents of Co were prepared by sol–gel method combined with cold-press technology. X-ray diffraction and field emission scanning electron microscopy were used to confirm the single-phase composition and plate grain morphology of the samples. Analysis of the thermoelectric properties of [Ca2CoO3−δ]0.62[CoO2] (300–1026 K) shows that the electrical conductivity of the CCO–Co3 sample with low Co content is increased by 12% compared with that of the original sample CCO–Co1 at 1026 K. The thermal conductivity is decreased to 2.99 Wm−1 K−1. The ZT value of the samples with low Co content reaches 0.09 at 1026 K, which is 50% higher than that of the original sample CCO–Co1. Therefore, reducing Co content is an effective method to improve the thermoelectric properties of [Ca2CoO3−δ]0.62[CoO2] ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Dresselhaus, I. Thomas, Alternative energy technologies. Nature 414, 332 (2001)

    Article  CAS  Google Scholar 

  2. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012)

    Article  CAS  Google Scholar 

  3. A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 339–431 (2011)

    Article  Google Scholar 

  4. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 1995)

    Book  Google Scholar 

  5. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 7496 (2014)

    Article  Google Scholar 

  6. W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater. 1, 577 (2011)

  7. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997)

    Article  CAS  Google Scholar 

  8. M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003)

  9. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, G. Chen, Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014)

    Article  Google Scholar 

  10. Z.-H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y.-H. Ji, J. Feng, J. He, Highly enhanced thermoelectric properties of Bi/Bi2S3 nanocomposites. ACS Appl. Mater. Interfaces 9, 4828 (2017)

    Article  CAS  Google Scholar 

  11. R. Inoue, J. Nakano, T. Nakamura, T. Ube, T. Iida, Y. Kogo, Mechanical and thermoelectric properties of intragranular SiC- Nanoparticle/Mg2Si composites. J. Alloys Compd. 775, 657 (2019)

    Article  CAS  Google Scholar 

  12. J. Han, Q. Sun, W. Li, Y. Song, Microstructure and thermoelectric properties of La0.1Dy0.1SrxTiO3 ceramics. Ceram. Int. 43, 5557 (2017)

  13. Y.-N. Li, P. Wu, S.-P. Zhang, S. Chen, D. Yan, J.-G. Yang, L. Wang, X.-L. Huai, Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics. Chin. Phys. B 27, 057201 (2018)

  14. M.A. Torres, S. Rasekh, P. Bosque, G. Constantinescu, M.A. Madre, J.C. Diez, A. Sotelo, Decrease of electrical resistivity in Ca3Co4O9 thermoelectric ceramics by Ti doping. J Mater Sci: Mater Electron 26, 815–820 (2014)

    Google Scholar 

  15. S. Pinitsoontorn, N. Lerssongkram, N. Keawprak, V. Amornkitbamrung, Thermoelectric properties of transition metals-doped Ca3Co3.8M0.2O9+δ (M = Co, Cr, Fe, Ni, Cu and Zn). J. Mater. Sci.: Mater. Electron. 23, 1050–1056 (2011)

  16. S. Gowthamaraju, P. Bhobe, A. Nigam, Improved figure of merit and other thermoelectric properties of Sn1−xCuxSe. Appl. Phys. Lett. 113, 243904 (2018)

    Article  Google Scholar 

  17. G. Constantinescu, M.A. Torres, S. Rasekh, M.A. Madre, J.C. Diez, A. Sotelo, Modification of thermoelectric properties in Ca3Co4Oy ceramics by Nd doping. J Mater Sci: Mater Electron 25, 922–927 (2013)

    Google Scholar 

  18. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)

    Article  CAS  Google Scholar 

  19. W. Wei, C. Chang, T. Yang, J. Liu, H. Tang, J. Zhang, Y. Li, F. Xu, Z. Zhang, J.-F. Li, Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. J. Am. Chem. Soc. 140, 499–505 (2017)

    Article  Google Scholar 

  20. Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, Y. Xie, Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 137, 6587–6593 (2015)

    Article  CAS  Google Scholar 

  21. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit–layered cobaltite with an anisotropic giant magnetoresistance:Ca3Co4O9. Phys. Rev. B 62, 166 (2000)

    Article  CAS  Google Scholar 

  22. J. Yang, H.L. Yip, A.K.Y. Jen, Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3, 549–565 (2013)

    Article  CAS  Google Scholar 

  23. N. Van Nong, N. Pryds, S. Linderoth, M. Ohtaki, Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv. Mater. 23, 2484–2490 (2011)

    Article  Google Scholar 

  24. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M= Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105 (1995)

  25. N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publications, New York, 1958)

    Google Scholar 

  26. F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, G.Z. Zhang, Effects of Pr doping on thermoelectric transport properties of Ca3−xPrxCo4O9. Solid State Sci. 13, 1443 (2011)

    Article  CAS  Google Scholar 

  27. C. Huang, F. Zhang, X. Zhang, Q. Lu, J. Zhang, Z. Liu, Enhanced thermoelectric figure of merit through electrical and thermal transport modulation by dual-doping and texture modulating for Ca3Co4O9+δ oxide materials. J. Alloy. Compd. 687, 87–94 (2016)

    Article  CAS  Google Scholar 

  28. J. Pei, G. Chen, D.Q. Lu, P.S. Liu, N. Zhou, Synthesis and high temperature thermoelectric properties of Ca3.0−x−yNdxNayCo4O9+δ. Solid State Commun. 146, 283 (2008)

  29. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, F.P. Wang, Thermoelectric properties of Gd, Y co-doped Ca3Co4O9+δ. Curr. Appl. Phys. 9, 409 (2009)

    Article  Google Scholar 

  30. W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000)

    Article  CAS  Google Scholar 

  31. T. Mizokawa, L. Tjeng, P. Steeneken, N. Brookes, I. Tsukada, T. Yamamoto, K. Uchinokura, Photoemission and X–ray-absorption study of misfit–layered (Bi, Pb)–Sr–Co–O compounds: electronic structure of a hole–doped Co–O triangular lattice. Phys. Rev. B 64, 115104 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51836009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yn., Wu, P., Zhang, Sp. et al. Effect of Co content on [Ca2CoO3−δ]0.62[CoO2] thermoelectric properties. J Mater Sci: Mater Electron 31, 5353–5359 (2020). https://doi.org/10.1007/s10854-020-03095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03095-2

Navigation