Skip to main content
Log in

Facile constructing ZnO/ZnCO3 heterojunction for high-performance photocatalytic NO oxidation and reaction pathway study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fast electron–hole recombination and low light utilization are two significant constraints to hinder the development of photocatalysis technology. Particularly, properly engineered heterojunction photocatalysts exhibit superior photoactivity because of spatial separation of photoinduced electron–hole pairs. Therefore, we prepared a heterojunction of zinc carbonate and zinc oxide by calcining precursor at 350 °C for 2 h. The as-prepared photocatalysts were obtained via a facile method and possessed promising photocatalytic activity for NO oxidation under UV light irradiation; the NO removal efficiency of heterojunction (42%) was better than that of pristine zinc oxide (28%) and precursor; the composites still maintained 88% activity after five cycles. Some relevant physicochemical properties were delicately investigated to elucidate that heterojunction can remarkably suppress the recombination of the electron–hole pairs, and promote the carriers transforming to activity species, which can participate in the redox reaction occurring on the surface of photocatalysts. More importantly, electron spin resonance measurement integrated with in situ DRIFTS spectra was applied to intuitively and dynamically monitor the reaction process and uncover the promotion mechanism. Finally, we believe that the synthesis strategy and mechanism analysis would provide guidance for understanding the gas-phase reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  2. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  Google Scholar 

  3. M. Schreck, M. Niederberger, Chem. Mater. 31, 597 (2019)

    Article  CAS  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  5. D.D. Ma, J.W. Shi, D.K. Sun, Y.J. Zou, L.H. Cheng, C. He, H.K. Wang, C.M. Niu, L.Z. Wang, Appl. Catal. B 244, 748 (2019).

    Article  CAS  Google Scholar 

  6. H. Li, J. Shang, Z.H. Ai, L.Z. Zhang, J. Am. Chem. Soc. 140, 526 (2018)

    Article  CAS  Google Scholar 

  7. F. Yu, P. Wei, Y. Yang, Y. Chen, L. Guo, Z. Peng, Nano Mater. Sci. 1, 60 (2019)

    Article  Google Scholar 

  8. J.D. Hu, D.Y. Chen, Z. Mo, N.J. Li, Q.F. Xu, H. Li, J.H. He, H. Xu, J.M. Lu, Angew. Chem. Int. Ed. 58, 2073 (2019).

    Article  CAS  Google Scholar 

  9. H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Chem. Soc. Rev. 43, 5234 (2014)

    Article  CAS  Google Scholar 

  10. J.Y. Yu, S.D. Zhuang, X.Y. Xu, W.C. Zhu, B. Feng, J.G. Hu, J. Mater. Chem. A 3, 1199 (2015)

    Article  CAS  Google Scholar 

  11. X.X. Zhao, J.R. Feng, J.W. Liu, J. Lu, W. Shi, G.M. Yang, G.C. Wang, P.Y. Feng, P. Cheng, Adv. Sci. 5, 1700590 (2018)

    Article  Google Scholar 

  12. Y.C. Xu, H.Z. Li, B.J. Sun, P.Z. Qiao, L.P. Ren, G.H. Tian, B.J. Jiang, K. Pan, W. Zhou, Chem. Eng. J. 379, 122295 (2020)

    Article  CAS  Google Scholar 

  13. G.P. Zhang, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, Appl. Catal. B 250, 313 (2019).

    Article  CAS  Google Scholar 

  14. P. Madhusudan, Y. Wang, B.N. Chandrashekar, W.J. Wang, J.W. Wang, J. Miao, R. Shi, Y.X. Liang, G.J. Mi, C. Cheng, Appl. Catal. B 253, 379 (2019).

    Article  CAS  Google Scholar 

  15. N. Li, Y. Tian, J.H. Zhao, J. Zhang, W. Zuo, L.C. Kong, H. Cui, Chem. Eng. J. 352, 412 (2018)

    Article  CAS  Google Scholar 

  16. S. Adhikari, S. Selvaraj, D.H. Kim, Appl. Catal. B 244, 11 (2019).

    Article  CAS  Google Scholar 

  17. S.F. Chen, F.N. Liu, M.Z. Xu, J.F. Yan, F.C. Zhang, W. Zhao, Z.Y. Zhang, Z.H. Deng, J.N. Yun, R.Y. Chen, C.L. Liu, J. Colloid Interface Sci. 553, 613 (2019).

    Article  CAS  Google Scholar 

  18. Z. Guo, W. Huo, T. Cao, F. Fan, G. Ge, X. Liu, K. Chen, H.-C. Yao, F. Dong, Y. Zhang, CrystEngComm (2020), https://doi.org/10.1039/c9ce01375j.

    Article  Google Scholar 

  19. W.C. Huo, W.N. Xu, T. Cao, X.Y. Liu, Y.X. Zhang, F. Dong, Appl. Catal. B 254, 206 (2019).

    Article  CAS  Google Scholar 

  20. X.W. Wang, B. Yuan, Z.H. Xie, D.X. Wang, R.B. Zhang, J. Colloid Interface Sci. 446, 150 (2015).

    Article  CAS  Google Scholar 

  21. Z. Hu, K.N. Li, X.F. Wu, N. Wang, X.F. Li, Q. Li, L. Li, K.L. Lv, Appl. Catal. B 256, 117860 (2019).

    Article  CAS  Google Scholar 

  22. Y.H. Li, X.F. Wu, W.K. Ho, K.L. Lv, Q. Li, M. Li, S.C. Lee, Chem. Eng. J. 336, 200 (2018)

    Article  CAS  Google Scholar 

  23. S.S. Patil, M.A. Johar, M.A. Hassan, D.R. Patil, S.W. Ryu, Appl. Catal. B 237, 791 (2018).

    Article  CAS  Google Scholar 

  24. L. Ge, C.C. Han, J. Liu, Y.F. Li, Appl. Catal. A 409, 215 (2011).

    Article  Google Scholar 

  25. H. Wang, Y.J. Sun, G.M. Jiang, Y.X. Zhang, H.W. Huang, Z.B. Wu, S.C. Lee, F. Dong, Environ. Sci. Technol. 52, 1479 (2018)

    Article  CAS  Google Scholar 

  26. Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117, 11302 (2017)

    Article  CAS  Google Scholar 

  27. H. Wang, W.J. He, X.A. Dong, H.Q. Wang, F. Dong, Sci. Bull. 63, 117 (2018)

    Article  CAS  Google Scholar 

  28. K.I. Hadjiivanov, Catal. Rev. 42, 71 (2000)

    Article  CAS  Google Scholar 

  29. X.A. Dong, W.D. Zhang, Y.J. Sun, J.Y. Li, W.L. Cen, Z.H. Cui, H.W. Huang, F. Dong, J. Catal. 357, 41 (2018)

    Article  Google Scholar 

  30. M. Kantcheva, J. Catal. 204, 479 (2001)

    Article  CAS  Google Scholar 

  31. B. Klingenberg, M.A. Vannice, Appl. Catal. B 21, 19 (1999).

    Article  CAS  Google Scholar 

  32. J.Y. Li, S. Yin, F. Dong, W.L. Cen, Y.H. Chu, ACS Appl. Mater. Interface 9, 19861 (2017).

    Article  CAS  Google Scholar 

  33. K. Hadjiivanov, H. Knozinger, Phys. Chem. Chem. Phys. 2, 2803 (2000)

    Article  CAS  Google Scholar 

  34. J.C.S. Wu, Y.T. Cheng, J. Catal. 237, 393 (2006)

    Article  CAS  Google Scholar 

  35. N. Tang, Y. Liu, H.Q. Wang, Z.B. Wu, J. Phys. Chem. C 115, 8214 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude to the National Natural Science Foundation of China (Grant No. 21576034), Joint Funds of the National Natural Science Foundation of China-Guangdong (Grant No. U1801254), Dazu District Science and Technology Commission Project (DZKJ, 2018ABB1011), and the Fundamental Research Funds for the Central Universities (2018CDYJSY0055, 2018CDQYCL0027 and 106112017CDJXSYY0001) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxin Zhang, Gui Ye or Shilian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 515.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, Z., Huo, W. et al. Facile constructing ZnO/ZnCO3 heterojunction for high-performance photocatalytic NO oxidation and reaction pathway study. J Mater Sci: Mater Electron 31, 4527–4534 (2020). https://doi.org/10.1007/s10854-020-03002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03002-9

Navigation