Skip to main content
Log in

Thermal, mechanical, and AC electrical studies of PVA–PEG–Ag2S polymer hybrid material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 21 April 2021

This article has been updated

Abstract

Polymer hybrid films were prepared by solution casting technique, using polyvinyl alcohol–polyethylene glycol (PVA–PEG) blend host matrix as the organic component and Ag2S (in-situ formed) as the inorganic component. Differential scanning calorimetry (DSC) studies revealed the increased flexibility of polymer hybrid films, when compared to pure PVA–PEG blend film. Thermal stability of the hybrid film PPS3 (with AgNO3:Na2S ratio equal to 3.0 ml: 1.5 ml) which has uniformly distributed Ag2S nanostructures is more, when compared to other hybrid films, as revealed by thermogravimetric analysis (TGA). Polymer hybrid film PPS1 (with AgNO3:Na2S ratio equal to 1.0 ml: 0.5 ml) which has uniformly distributed Ag2S microstructures shows increased values of tensile strength and percentage elongation at break. The presence of Ag2S nanoparticles in PPS3 film has increased the overall toughness of the corresponding hybrid film. The highest bulk conductivity equal to 1.43 × 10–5 Sm−1 is observed for PPS4 film (with 4.0 ml: 2 ml ratio of precursors), which has a comparatively lower degree of crystallinity and porous structure. Impedance spectroscopy studies reveal that Ag2S filler, in its micro and nano forms, can substantially improve the AC conductivity and dielectric properties of PVA–PEG polymer blend (loaded with Ag2S).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. K.-C. Theodora, in Hybrid and Hierarchical Composite Materials, ed. by C.-S. Kim, C. Randow, T. Sano (Springer, Cham, 2015), p. 11

    Google Scholar 

  2. M.H. Makled, E. Sheha, T.S. Shnap, M.K. El-Mansy, J. Adv. Res. 4, 531 (2013)

    CAS  Google Scholar 

  3. B.M. Baraker, B. Lobo, J. Mater. Sci.: Mater. Electron. 29, 4106 (2018)

    CAS  Google Scholar 

  4. O.G. Abdullah, S.A. Hussen, Adv. Mater. Res. 383, 3257 (2012)

    Google Scholar 

  5. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)

    CAS  Google Scholar 

  6. S. Zalipsky, Adv. Drug Deliv. Rev. 16, 157 (1995)

    CAS  Google Scholar 

  7. W.-T. Chuang, K.-S. Shih, P.-D. Hong, J. Polym. Res. 12, 197 (2005)

    CAS  Google Scholar 

  8. J.J. Sahlin, N.A. Peppas, J. Appl. Polym. Sci. 63(1), 103 (1997)

    CAS  Google Scholar 

  9. H. Amiri, M. Mohsennia, J. Mater. Sci.: Mater. Electron. 28, 4586 (2017)

    CAS  Google Scholar 

  10. A.M.K. Aippunny, S.M. Shamsudeen, P. Valparambil, S. Mathew, U.N. Vishwambharan, J. Appl. Polym. Sci. 133, 43568 (2016)

    Google Scholar 

  11. Z.M. Elimat, J. Compos. Mater. 49(1), 1 (2013)

    Google Scholar 

  12. P. Jayakrishnan, M.T. Ramesan, J. Inorg. Organomet. Polym. 27(1), 323 (2017)

    CAS  Google Scholar 

  13. X.-F. Qian, J. Yin, S. Feng, S.-H. Liu, Z.-K. Zhu, J. Mater. Chem. 11, 2504 (2001)

    CAS  Google Scholar 

  14. S.I. Sadovnikov, A.I. Gusev, Eur. J. Inorg. Chem. 2016(31), 4944 (2016)

    CAS  Google Scholar 

  15. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Mater. Sci. Semicond. Process. 71, 197 (2017)

    CAS  Google Scholar 

  16. K. Kannan, L. Guru Prasad, S. Agilan, N. Muthukumarasamy, Optik 170, 10 (2018)

    CAS  Google Scholar 

  17. B. Yeole, T. Sen, D. Hansora, S. Mishra, Am. J. Sens. Technol. 4(1), 10 (2017)

    Google Scholar 

  18. A. Siabi-Garjan, Sh Fakhri-Mirzanagh, Y. Azizian-Kalandaragh, J. Quant. Spectrosc. Radiat. Transf. (2018). https://doi.org/10.1016/j.jqsrt.2018.10.018

    Article  Google Scholar 

  19. M.R. Khan, A.M. Jagtap, K.S.R. Koteswara Rao, R. Menon, Org. Electron. 69, 361 (2019)

    CAS  Google Scholar 

  20. F. Mammeri, E.L. Bourhis, L. Rozes, C. Sanchez, J. Mater. Chem. 15, 3787 (2005)

    CAS  Google Scholar 

  21. B.M. Baraker, B. Lobo, Bull. Mater. Sci. 42(1), 18 (2019)

    Google Scholar 

  22. Z.I. Ali, W.H. Essa, J. Sci. Res. 6(1), 29 (2014)

    Google Scholar 

  23. X. Jiang, T. Jiang, X. Zhang, H. Dai, Xi Zhang. Polym. Eng. Sci. 52(10), 2245 (2012)

    CAS  Google Scholar 

  24. X. Liu, H. Huang, Z.Y. Xie, Y. Zhang, Y.X. Zhang, K. Sun, L.N. Min, Polym. Test. 22, 9 (2003)

    Google Scholar 

  25. S. El-Sayed, K.H. Mahmoud, A.A. Fatah, A. Hassen, Phys B 406, 4068 (2011)

    CAS  Google Scholar 

  26. S.S. Devangamath, B. Lobo, J. Inorg, Organomet. Polym. 29(5), 1466 (2019)

    CAS  Google Scholar 

  27. S. Choudhary, Polym. Compos. 39(S3), E1788 (2018)

    CAS  Google Scholar 

  28. S. Liang, J. Yang, X. Zhang, Y. Bai, J. Appl. Polym. Sci. 122, 813 (2011)

    CAS  Google Scholar 

  29. C.M. Kramer, Z.A. Munir, J.V. Volponi, Thermochim. Acta. 55, 11 (1982)

    CAS  Google Scholar 

  30. T. Bauer, D. Laing, R. Tamme, Int. J. Thermophys. 33, 91 (2012)

    CAS  Google Scholar 

  31. R.P. Chartoff, A.K. Sircar, Encycl. Polym. Sci. Technol. (2005). https://doi.org/10.1002/0471440264.pst367

    Article  Google Scholar 

  32. Y. Tsuchiya, K. Sumi, J. Polym. Sci. Part A-1 7, 3151 (1969)

    CAS  Google Scholar 

  33. J.B. Gilbert, J.J. Kipling, B. McEnaney, J.N. Sherwood, Polymer 3, 1 (1962)

    CAS  Google Scholar 

  34. S.K. Kwon, D.H. Kim, J. Korean Phys. Soc. 49(4), 1421 (2006)

    CAS  Google Scholar 

  35. J. Ahmad, K. Deshmukh, M. Habib, M.B. Hägg, Arab. J. Sci. Eng. 39, 6805 (2014)

    CAS  Google Scholar 

  36. C.L. Beyler, M.M. Hirschler, in SFPE Handbook of Fire Protection Engineering 2, 3rd edn, Chapter 7, 110 (2002)

  37. L.E. Nielsen, J. Compos. Mater. 1, 100 (1967)

    CAS  Google Scholar 

  38. S.I. Sadovnikov, A.I. Gusev, A.A. Rempel, Superlattice Microstruct. 83, 35 (2015)

    CAS  Google Scholar 

  39. H.S. Varol, F. Meng, B. Hosseinkhani, C. Malm, D. Bonn, M. Bonn, A. Zaccone, S.H. Parekh, Proc. Natl. Acad. Sci. U.S.A. 114(16), E3170 (2017)

    CAS  Google Scholar 

  40. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Composites B 39, 933 (2008)

    Google Scholar 

  41. X. Shi, H. Chen, F. Hao, R. Liu, T. Wang, P. Qiu, U. Burkhardt, Y. Grin, L. Chen, Nat. Mater. 17, 421 (2018)

    CAS  Google Scholar 

  42. D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules 39, 6565 (2006)

    CAS  Google Scholar 

  43. J.R. Macdonald, W.B. Johnson, in Impedance Spectroscopy Theory, Experiment and Applications, ed. by E. Barsoukov, J.R. Macdonald (Wiley, New Jersey, 2005), p. 2

    Google Scholar 

  44. E. von Hauff, J. Phys. Chem. C 123, 11329 (2019)

    Google Scholar 

  45. M. Takada, T. Nagase, T. Kobayashi, H. Naito, J. Appl. Phys. 125, 115501 (2019)

    Google Scholar 

  46. M.F.G. Sanchez, J.-C. M’Peko, A.R.R. Salvador, G.R. Gattorno, Y. Echevarria, F.F. Gutierrez, A. Delgado, J. Chem. Educ. 80(9), 1062 (2003)

    Google Scholar 

  47. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    CAS  Google Scholar 

  48. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion. 146, 329 (2002)

    CAS  Google Scholar 

  49. G.J. Brug, A.L. Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)

    CAS  Google Scholar 

  50. G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Solid State Ion. 76, 47 (1995)

    CAS  Google Scholar 

  51. F.M. Reicha, M. El-Hiti, A.Z. El-Sonbati, M.A. Diab, J. Phys. D 24, 369 (1991)

    CAS  Google Scholar 

  52. S. Miyatani, J. Phys. Soc. Jpn. 10(9), 786 (1955)

    CAS  Google Scholar 

  53. M.H. Hebb, J. Chem. Phys. 20(1), 185 (1952)

    CAS  Google Scholar 

  54. Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, A.C.S. Appl, Mater. Interfaces 4, 65 (2012)

    CAS  Google Scholar 

  55. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  56. A.S.A. Khiar, R. Puteh, A.K. Arof, Phys B 373, 23 (2006)

    CAS  Google Scholar 

  57. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Int. J. Electrochem. Sci. 3, 597 (2008)

    CAS  Google Scholar 

  58. P. Jeevanandam, S. Vasudevan, J. Chem. Phys. 109, 8109 (1998)

    CAS  Google Scholar 

  59. J. Naik, R.F. Bhajantri, S.G. Rathod, T. Sheela, V. Ravindrachary, J. Adv. Dielectr. 6(4), 1650028 (2016)

    CAS  Google Scholar 

  60. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  61. K. Funke, B. Roling, M. Lange, Solid State Ion. 105, 195 (1998)

    CAS  Google Scholar 

  62. P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 91, 207601 (2003)

    CAS  Google Scholar 

  63. K. Funke, R.D. Banhatti, D.M. Laughman, L.G. Badr, M. Mutke, A. Santic, W. Wrobel, E.M. Fellberg, C. Biermann, Z. Phys. Chem. 224, 1891 (2010)

    CAS  Google Scholar 

  64. N. Srivastava, M. Kumar, Solid State Ion. 262, 806 (2014)

    CAS  Google Scholar 

  65. S.Z. Yusof, H.J. Woo, A.K. Arof, Ionics 22, 2113 (2016)

    CAS  Google Scholar 

  66. M. Kiliç, Y. Karabul, Z.G. Özdemir, S. Erdönmez, A.E. Bulgurcuoglu, S.S. Yesilkaya, M. Okutan, O. Içelli, Bull. Mater. Sci. 41, 52 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Science Instrumentation Centre (USIC), Karnatak University, Dharwad, for providing facilities to carry out DSC and TGA characterization and for acquisition of the data. The Universal Testing Machine (UTM) available at Department of Chemistry, Karnatak Science College, Dharwad has been used for mechanical studies. Dr. Saraswati P. Masti acknowledges research funding from DST-SERB Major Research Project number: SB/EMEQ-213/2014 dated 29-01-2016; Shivayogi S. Narasagoudr who is working as a project fellow in this project acknowledges financial assistance from the sponsors (DST-SERB, Government of India). The authors are thankful to SAIF-STIC, Cochin University, Kerala, for providing SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Lobo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devangamath, S.S., Lobo, B., Masti, S.P. et al. Thermal, mechanical, and AC electrical studies of PVA–PEG–Ag2S polymer hybrid material. J Mater Sci: Mater Electron 31, 2904–2917 (2020). https://doi.org/10.1007/s10854-019-02835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02835-3

Navigation