Skip to main content
Log in

Transfer printing via a PAA sacrificial layer for wrinkle-free PDMS metallization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) metallization has been extensively used in varieties of micro- and nanosystem technologies. However, the deposited metal film on the PDMS surface is prone to wrinkling because of a large thermal mismatch stress, which may cause difficulties in some applications. In this work, a simple transfer printing method via a poly(acrylic acid) (PAA) sacrificial layer for PDMS metallization is presented. A PAA film was spin-coated on the silicon substrate, metal patterns were fabricated on the PAA film based on photolithography techniques, and a PDMS sheet was put on the surface of metal patterns and separated with metal patterns from the silicon substrate by dissolving the PAA film in room-temperature water. Au patterns with a variety of shapes and sizes were successfully transferred on the PDMS sheet, and there were no wrinkles in Au patterns. As a demonstration, a PDMS-based tunable diffraction grating with a line width of 2 µm and an initial period of 4 µm was fabricated. The grating displayed excellent diffraction efficiencies, and the period could be tuned by simply stretching the grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Hwang, R.N. Candler, Lab Chip 17, 3948–3959 (2017)

    Article  CAS  Google Scholar 

  2. J.S. Liu, Z. Wang, P.Y. Zeng, M.C. Song, W.H. Huang, Z. Liu, Z. Xu, J.M. Li, C. Liu, Y.Q. Jiang, Sens. Actuator B: Chem. 266, 570–576 (2018)

    Article  CAS  Google Scholar 

  3. T.M. Reidy, D. Luo, P. Rana, B. Huegel, X. Cheng, J. Micromech. Microeng. 29, 015014 (2018)

    Article  Google Scholar 

  4. A. Kumar, J. Agrawal, A.K. Sharma, V. Singh, A. Agarwal, J. Mater. Sci.: Mater. Electron. 30, 16554–16561 (2019)

    CAS  Google Scholar 

  5. Y. Li, M. Wu, Y. Sun, S. Yu, J. Mater. Sci.: Mater. Electron. 30, 13271–13279 (2019)

    CAS  Google Scholar 

  6. J.S. Liu, S.L. Yang, Z.H. Liu, H.J. Guo, Z. Liu, Z. Xu, C. Liu, L.D. Wang, J. Micromech. Microeng. 29, 095001 (2019)

    Article  CAS  Google Scholar 

  7. Z. Hao, H. Chen, D. Ma, Anal. Chem. 81, 8649–8653 (2009)

    Article  CAS  Google Scholar 

  8. C. Cui, X. Wang, Z. Yi, B. Yang, X. Wang, X. Chen, J. Liu, C. Yang, ACS Appl. Mater. Interfaces 10, 3652–3659 (2018)

    Article  CAS  Google Scholar 

  9. J. Wu, H.J. Bai, X.B. Zhang, J.J. Xu, H.Y. Chen, Langmuir 26, 1191–1198 (2010)

    Article  CAS  Google Scholar 

  10. C.Y. Li, Y.C. Liao, ACS Appl. Mater. Interfaces 8, 11868–11874 (2016)

    Article  CAS  Google Scholar 

  11. M.Y. Cheng, C.L. Lin, Y.T. Lai, Y.J. Yang, Sensors 10, 10211–10225 (2010)

    Article  CAS  Google Scholar 

  12. A. Nag, S. Feng, S.C. Mukhopadhyay, J. Kosel, D. Inglis, Sens. Actuator A: Phys. 280, 525–534 (2018)

    Article  CAS  Google Scholar 

  13. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Nature 393, 146–149 (1998)

    Article  CAS  Google Scholar 

  14. T. Ma, H.S. Liang, G. Chen, B. Poon, H.Q. Jiang, H.B. Yu, Opt. Express 21, 11994–11991 (2013)

    Article  CAS  Google Scholar 

  15. Y.K. Sun, F.S. Yi, Y.G. Bi, J. Feng, Org. Electron. 65, 91–95 (2019)

    Article  CAS  Google Scholar 

  16. L. Guo, S.P. DeWeerth, Small 6, 2847–2852 (2010)

    Article  CAS  Google Scholar 

  17. S.H. Kim, J. Yoon, S.O. Yun, Y. Hwang, H.S. Jang, H.C. Ko, Adv. Funct. Mater. 23, 1375–1382 (2013)

    Article  CAS  Google Scholar 

  18. O. Graudejus, P. Gorrn, S. Wagner, ACS Appl. Mater. Interfaces 2, 1927–1933 (2010)

    Article  CAS  Google Scholar 

  19. N. Chou, J. Jeong, S. Kim, J. Micromech. Microeng. 23, 125035 (2013)

    Article  Google Scholar 

  20. K.J. Lee, K.A. Fosser, R.G. Nuzzo, Adv. Funct. Mater. 15, 557–566 (2005)

    Article  CAS  Google Scholar 

  21. K.S. Lim, W.J. Chang, Y.M. Koo, R. Bashir, Lab Chip 6, 578–580 (2006)

    Article  CAS  Google Scholar 

  22. R.H. Gu, M. Ji, Y. Xuan, Y.S. Cui, C.S. Yuan, W.D. Li, H.X. Ge, Y.F. Chen, Appl. Phys. A 121, 335–341 (2015)

    Article  CAS  Google Scholar 

  23. V. Linder, B.D. Gates, D. Ryan, B.A. Parviz, G.M. Whitesides, Small 1, 730–736 (2005)

    Article  CAS  Google Scholar 

  24. K. Du, I. Wathuthanthri, Y. Liu, W. Xu, C.H. Choi, ACS Appl. Mater. Interfaces 4, 5505–5514 (2012)

    Article  CAS  Google Scholar 

  25. M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, J.A. Rogers, Nat. Mater. 5, 33–38 (2006)

    Article  CAS  Google Scholar 

  26. Z.Y. Huang, W. Hong, Z. Suo, J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  CAS  Google Scholar 

  27. D. Maji, S. Das, J. Biomed. Mater. Res. A 106, 725–737 (2018)

    Article  CAS  Google Scholar 

  28. E. Bélanger, M. Bernier, J.P. Bérubé, S. Gagnon, D. Côté, R. Vallée, Appl. Opt. 47, 652–655 (2008)

    Article  Google Scholar 

  29. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, A. Aydinli, Opt. Express 17, 8542–8547 (2009)

    Article  CAS  Google Scholar 

  30. L.Z. Xu, X.Z. Wang, Y. Kim, T.C. Shyu, J. Lyu, N.A. Kotov, ACS Nano 10, 6156–6162 (2016)

    Article  CAS  Google Scholar 

  31. S. Ratzsch, E.B. Kley, A. Tunnermann, A. Szeghalmi, Opt. Express 23, 17955–17965 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51875083, 51621064, 51905078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, X., Wang, Z. et al. Transfer printing via a PAA sacrificial layer for wrinkle-free PDMS metallization. J Mater Sci: Mater Electron 31, 2347–2352 (2020). https://doi.org/10.1007/s10854-019-02767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02767-y

Navigation