Skip to main content
Log in

Influence of ultrathin gahnite anti-reflection coating on the power conversion efficiency of polycrystalline silicon solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Current research has concentrated on the development of ZnAl2O4 (gahnite) spinel nanostructure through anti-reflection coating (ARC) material for improved power conversion efficiency (PCE) of polycrystalline silicon solar cells. Radio frequency magnetron sputtering technique was adopted to deposit transparent polycrystalline gahnite nano-microfilms at room temperature. Material deposition was performed in a pure argon atmosphere on polycrystalline silicon solar cell substrates with a coating duration of 5–45 min. The influence of gahnite spinel nanostructure-integrated coating on the efficiency of silicon solar cell was explored by investigating physical, electrical, optical characteristics and temperature distribution profiles. The synthesized ARC material has gahnite spinel crystal structure composed of two-dimensional (2D) nanosheets. Atomic force microscopy study revealed that the thickness of synthesized gahnite 2D nanosheets was about 50 nm. The resistivity of gahnite coated with the time duration of 35 (T-IV) minutes on silicon solar cell was measured to be 1.93 × 10−3 Ω cm. The nano-microfilms showed a great optical transmittance (97%) in the wavelength range of 300–800 nm. The maximum PCE of 21.27% at open atmospheric condition and 23.83% at controlled atmospheric condition had been achieved for 35 (T-IV) minutes of gahnite nano-microfilm coating and it has been proved that gahnite nano-microfilms assists the absorption of more photons on a polycrystalline silicon solar cell substrate. The results acquired indicate that the gahnite nano-microfilm is an appropriate ARC material for polycrystalline silicon solar cells to enhance the PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding, B. Jiang, Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells 111, 160–164 (2013)

    CAS  Google Scholar 

  2. D.-W. Kang, J.-Y. Kwon, J. Shim, H.-M. Lee, M.-K. Han, Al2O3 antireflection layer between glass and transparent conducting oxide for enhanced light trapping in microcrystalline silicon thin film solar cells. Sol. Energy Mater. Sol. Cells 101, 22–25 (2012)

    CAS  Google Scholar 

  3. S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, J.-C. Liu, Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol. Energy Mater Sol. Cells 90, 2710–2719 (2006)

    CAS  Google Scholar 

  4. D. Chen, Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol. Energy Mater. Sol. Cells 68, 313–336 (2001)

    CAS  Google Scholar 

  5. C.-T. Chou, F.-H. Wang, W.-C. Chen, Effects of concentration of reduced graphene oxide on properties of sol–gel prepared Al-doped zinc oxide thin films. Thin Solid Films 605, 143–148 (2016)

    CAS  Google Scholar 

  6. S. Rahmane, M.S. Aida, M.A. Djouadi, N. Barreau, Effects of thickness variation on properties of ZnO: Al thin films grown by RF magnetron sputtering deposition. Superlattices Microstruct. 79, 148–155 (2015)

    CAS  Google Scholar 

  7. J. Lee, D. Lee, D. Lim, K. Yang, Structural, electrical and optical properties of ZnO: Al films deposited on flexible organic substrates for solar cell applications. Thin Solid Films 515, 6094–6098 (2007)

    CAS  Google Scholar 

  8. S.-N. Bai, T.-Y. Tseng, Electrical and optical properties of ZnO: Al thin films grown by magnetron sputtering. J. Mater. Sci. Mater. Electron. 20, 253–256 (2009)

    CAS  Google Scholar 

  9. D. Song, A.G. Aberle, J. Xia, Optimisation of ZnO: Al films by change of sputter gas pressure for solar cell application. Appl Surf Sci 195, 291–296 (2002)

    CAS  Google Scholar 

  10. T. Jannane, M. Manoua, A. Liba, N. Fazouan, A. Hichou, A. Almaggoussi, A. Outzourhit, M. Chaik, Sol–gel aluminum-doped ZnO thin films: synthesis and characterization. J. Mater. Environ. Sci. 8, 160 (2017)

    CAS  Google Scholar 

  11. S. Bose, S. Mandal, A. Barua, S. Mukhopadhyay, Sacrificial layer assisted front textured glass substrate with improved light management in thin film silicon solar cells. J. Mater. Sci. Mater. Electron. 30, 2622–2629 (2019)

    CAS  Google Scholar 

  12. G.V. Kaliyannan, S.V. Palanisamy, M. Palanisamy, M. Chinnasamy, S. Somasundaram, N. Nagarajan, R. Rathanasamy, Utilization of 2D gahnite nanosheets as highly conductive, transparent and light trapping front contact for silicon solar cells. Appl. Nanosci. 9, 1427–1437 (2019)

    Google Scholar 

  13. Q. Hou, F. Meng, J. Sun, Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition. Nanoscale Res. Lett. 8, 144 (2013)

    Google Scholar 

  14. S. Yoshioka, F. Oba, R. Huang, I. Tanaka, T. Mizoguchi, T. Yamamoto, Atomic structures of supersaturated ZnO–Al2O3 solid solutions. J. Appl. Phys. 103, 014309 (2008)

    Google Scholar 

  15. V. Balaprakash, P. Gowrisankar, S. Sudha, R. Rajkumar, Aluminum doped ZnO transparent conducting thin films prepared by sol–gel dip coating technique for solar cells and optoelectronic applications. Mater. Technol. 33, 414–420 (2018)

    CAS  Google Scholar 

  16. I. Volintiru, M. Creatore, B. Kniknie, C. Spee, M. Van De Sanden, Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition. J. Appl. Phys. 102, 043709 (2007)

    Google Scholar 

  17. C.H. Ahn, H. Kim, H.K. Cho, Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition. Thin Solid Films 519, 747–750 (2010)

    CAS  Google Scholar 

  18. P. Misra, V. Ganeshan, N. Agrawal, Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J. Alloys Compd. 725, 60–68 (2017)

    CAS  Google Scholar 

  19. K.H. Kim, K.C. Park, D.Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81, 7764–7772 (1997)

    CAS  Google Scholar 

  20. S.-F. Wang, G.-Z. Sun, L.-M. Fang, L. Lei, X. Xiang, X.-T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Sci. Rep. 5, 12849 (2015)

    CAS  Google Scholar 

  21. T. Gholami, M. Salavati-Niasari, M. Sabet, Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 178, 14–21 (2018)

    CAS  Google Scholar 

  22. D.-L. Ge, Y.-J. Fan, C.-L. Qi, Z.-X. Sun, Facile synthesis of highly thermostable mesoporous ZnAl2O4 with adjustable pore size. J. Mater. Chem. A 1, 1651–1658 (2013)

    CAS  Google Scholar 

  23. J. Yoo, J. Lee, S. Kim, K. Yoon, I.J. Park, S. Dhungel, B. Karunagaran, D. Mangalaraj, J. Yi, High transmittance and low resistive ZnO: Al films for thin film solar cells. Thin Solid Films 480, 213–217 (2005)

    Google Scholar 

  24. P.O. Amin, A.J. Kadhim, M.A. Ameen, R.T. Abdulwahid, Structural and optical properties of thermally annealed TiO2–SiO2 binary thin films synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 29, 16010–16020 (2018)

    CAS  Google Scholar 

  25. N.F. Habubi, R.A. Ismail, K.A. Mishjil, K.I. Hassoon, Increasing the silicon solar cell efficiency with nanostructured SnO2 anti-reflecting coating films. Silicon 11, 543–548 (2019)

    CAS  Google Scholar 

  26. A. Taherniya, D. Raoufi, Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Mater. Res. Express 6, 016417 (2018)

    Google Scholar 

  27. Ö. Kesmez, E. Akarsu, H.E. Çamurlu, E. Yavuz, M. Akarsu, E. Arpaç, Preparation and characterization of multilayer anti-reflective coatings via sol–gel process. Ceram. Int. 44, 3183–3188 (2018)

    CAS  Google Scholar 

  28. J. Jung, A. Jannat, M.S. Akhtar, O. Yang, Sol–gel deposited double layer TiO2 and Al2O3 anti-reflection coating for silicon solar cell. J. Nanosci. Nanotechnol. 18, 1274–1278 (2018)

    CAS  Google Scholar 

  29. J. Chen, D. Chen, J. He, S. Zhang, Z. Chen, The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films. Appl. Surf. Sci. 255, 9413–9419 (2009)

    CAS  Google Scholar 

  30. J. Manifacier, J. Gasiot, J. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E Sci. Instrum. 9, 1002 (1976)

    CAS  Google Scholar 

  31. A. Abdelrahman, W. Yunus, A. Arof, Optical properties of tin sulphide (SnS) thin film estimated from transmission spectra. J. Non-Cryst. Solids 358, 1447–1451 (2012)

    CAS  Google Scholar 

  32. E. Chanta, C. Bhoomanee, A. Gardchareon, D. Wongratanaphisan, S. Phadungdhitidhada, S. Choopun, Development of anti-reflection coating layer for efficiency enhancement of ZnO dye-sensitized solar cells. J. Nanosci. Nanotechnol. 15, 7136–7140 (2015)

    CAS  Google Scholar 

  33. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, First-principles study of possible shallow donors in ZnAl2O4 spinel. Phys. Rev. B 87, 174101 (2013)

    Google Scholar 

  34. H. Kawazoe, K. Ueda, Transparent conducting oxides based on the spinel structure. J. Am. Ceram. Soc. 82, 3330–3336 (1999)

    CAS  Google Scholar 

  35. M. Mosleh, N. Pryds, P.V. Hendriksen, Thickness dependence of the conductivity of thin films (La, Sr) FeO3 deposited on MgO single crystal. Mater. Sci. Eng. B 144, 38–42 (2007)

    CAS  Google Scholar 

  36. T.S. Bhat, A.S. Kalekar, D.S. Dalavi, C.C. Revadekar, A.C. Khot, T.D. Dongale, P.S. Patil, Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications. J. Mater. Sci. Mater. Electron. 30, 17725–17734 (2019)

    CAS  Google Scholar 

  37. H. Uslu, Ş. Altındal, İ. Dökme, Illumination effect on electrical characteristics of organic-based Schottky barrier diodes. J. Appl. Phys. 108, 104501 (2010)

    Google Scholar 

  38. C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-micro Lett. 8, 347–357 (2016)

    Google Scholar 

  39. S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia 33, 311–321 (2013)

    Google Scholar 

  40. E. Radziemska, The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energy 28, 1–12 (2003)

    CAS  Google Scholar 

  41. J. Kumar, V.S. Negi, K.D. Chattopadhyay, R.V. Sarepaka, R.K. Sinha, Thermal effects in single point diamond turning: analysis, modeling and experimental study. Measurement 102, 96–105 (2017)

    Google Scholar 

Download references

Acknowledgements

Author (Gobinath Velu Kaliyannan) would like to thank the Council of Scientific and Industrial Research (CSIR), Pusa, New Delhi, India, for the award of the Direct Senior Research Fellowship (Direct – SRF, File No.: 08/678(0002)/2019-EMR-I, ACK. No.: 132297/2k18/1). The author thanks Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for the providing research facilities for the development through a start-up research Grant (Ref. No.: YSS/2015/001151)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Velu Kaliyannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu Kaliyannan, G., Palanisamy, S.V., Rathanasamy, R. et al. Influence of ultrathin gahnite anti-reflection coating on the power conversion efficiency of polycrystalline silicon solar cell. J Mater Sci: Mater Electron 31, 2308–2319 (2020). https://doi.org/10.1007/s10854-019-02763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02763-2

Navigation