Skip to main content
Log in

Total ionizing dose effects of 60Co γ-rays radiation on HfxZr1−xO2 ferroelectric thin film capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The behavior of ferroelectric thin film capacitors under radiation environments is significant for the development of rad-hard ferroelectric random access memory (FeRAM). Here, we fabricated the ferroelectric thin film capacitors with 12-nm-thick HfxZr1−xO2 (HZO) and investigated the total ionizing dose (TID) effects of 60Co γ-rays radiation on them. It is found that after 60Co γ rays radiation with a total dose as high as 10 Mrad (Si), the hysteresis loops of the HZO ferroelectric thin film capacitors slightly shift to the positive bias direction, and the remanent polarization decreases by 5%. Besides, negligible changes in surface morphology, leakage current density, relative dielectric constant, dielectric loss, endurance and retention characteristics are observed. These results suggest that the HZO ferroelectric thin film capacitors have great potential in the application for highly rad-hard FeRAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Scott, Applications of modern ferroelectrics. Science 315(5814), 954–959 (2007)

    Article  CAS  Google Scholar 

  2. S.T. Han, Y. Zhou, V.A.L. Roy, Towards the development of flexible non-volatile memories. Adv. Mater. 25(38), 5425–5449 (2013)

    Article  CAS  Google Scholar 

  3. R.K. Jha, P. Singh, M. Goswami et al., Impact of plasma enhanced atomic layer deposited HfO2 buffer layer on the structural, electrical and ferroelectric properties of metal/ferroelectric/insulator/semiconductor gate stack for non-volatile memory applications. J. Mater. Sci. 30(16), 15224–15235 (2019)

    CAS  Google Scholar 

  4. S. Gerardin, A. Paccagnella, Present and future non-volatile memories for space. IEEE Trans. Nucl. Sci. 57(6), 3016–3039 (2010)

    Google Scholar 

  5. J.F. Scott, C. Araujo, H.B. Meadows et al., Radiation effects on ferroelectric thin-film memories: retention failure mechanisms. J. Appl. Phys. 66(3), 1444–1453 (1989)

    Article  Google Scholar 

  6. N. Menou, A.-M. Castagnos, C. Muller et al., Degradation and recovery of polarization under synchrotron x rays in SrBi2Ta2O9 ferroelectric capacitors. J. Appl. Phys. 97(4), 044106 (2005)

    Article  Google Scholar 

  7. Q. Shi, Y. Ma, Y. Li et al., Drastic reduction of leakage current in ferroelectric Bi3.15Nd0.85Ti3O12 films by ionizing radiation. Nucl. Instrum. Methods Phys. Res., Sect. B 269(4), 452–454 (2011)

    Article  CAS  Google Scholar 

  8. S.A. Yang, B.H. Kim, M.K. Lee et al., Gamma-ray irradiation effects on electrical properties of ferroelectric PbTiO3 and Pb(Zr0.52Ti0.48)O3 thin films. Thin Solid Films 562, 185–189 (2014)

    Article  CAS  Google Scholar 

  9. T. Böscke, J. Müller, D. Bräuhaus et al., Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99(10), 102903 (2011)

    Article  Google Scholar 

  10. S. Mueller, J. Mueller, A. Singh et al., Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22(11), 2412–2417 (2012)

    Article  CAS  Google Scholar 

  11. D. Martin, J. Müller, T. Schenk et al., Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric. Adv. Mater. 26(48), 8198–8202 (2014)

    Article  CAS  Google Scholar 

  12. B. Zeng, W. Xiao, J. Liao et al., Compatibility of HfN metal gate electrodes with Hf0.5Zr0.5O2 ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Dev. Lett. 39(10), 1508–1511 (2018)

    Article  CAS  Google Scholar 

  13. F. Arnaud, A. Thean, M. Eller et al., Competitive and cost effective high-k based 28 nm CMOS technology for low power applications. in Proc. IEEE Int. Electron Devices Meeting (IEEE, 2009), pp. 1–4

  14. K. Florent, S. Lavizzari, L. Di Piazza et al., First demonstration of vertically stacked ferroelectric Al doped HfO2 devices for NAND applications. in Proc. Symp. VLSI Technol. (IEEE, 2017), pp. T158–T159

  15. K. Mistry, C. Allen, C. Auth et al., A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. in Proc. IEEE Int. Electron Devices Meeting (IEEE, 2007), pp. 247–250

  16. S. Natarajan, M. Agostinelli, S. Akbar et al., A 14 nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm 2 SRAM cell size. in Proc. IEEE Int. Electron Devices Meeting (IEEE, 2014), pp. 3.7.1–3.7.3

  17. Y. Cheng, M. Ding, X. Wu et al., Irradiation effect of HfO2 MOS structure under gamma-ray. in Proc. IEEE Int. Conference on Solid Dielectrics (IEEE, 2013), pp. 764–767

  18. Y. Xu, J. Bi, G. Xu et al., Total ionizing dose effects and annealing behaviors of HfO2-based MOS capacitor. Sci. China Inf. Sci. 60(12), 120401 (2017)

    Article  Google Scholar 

  19. J.S. Bi, Z.S. Han, E.X. Zhang et al., The impact of x-ray and proton irradiation on HfO2/Hf -based bipolar resistive memories. IEEE Trans. Nucl. Sci. 60(6), 4540–4546 (2013)

    Article  CAS  Google Scholar 

  20. X. Sang, E.D. Grimley, T. Schenk et al., On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106(16), 162905 (2015)

    Article  Google Scholar 

  21. B. Zeng, M. Liao, Q. Peng et al., 2-Bit/cell operation of Hf0.5Zr0.5O2 based FeFET memory devices for NAND applications. IEEE J. Electron Device Soc. 7, 551–556 (2019)

    Article  CAS  Google Scholar 

  22. S.J. Kim, J. Mohan, S.R. Summerfelt et al., Ferroelectric Hf0.5Zr0.5O2 thin films: a review of recent advances. JOM 71(1), 246–255 (2019)

    Article  Google Scholar 

  23. F. Ambriz-Vargas, G. Kolhatkar, M. Broyer et al., A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces. 9(15), 13262–13268 (2017)

    Article  CAS  Google Scholar 

  24. M.H. Park, H.J. Kim, Y.J. Kim et al., Effect of Zr content on the wake-up effect in Hf1–xZrxO2 films. ACS Appl. Mater. Interfaces. 8(24), 15466–15475 (2016)

    Article  CAS  Google Scholar 

  25. K.Y. Chen, Y.S. Tsai, Y.H. Wu, Ionizing radiation effect on memory characteristics for HfO2-based ferroelectric field-effect transistors. IEEE Electron Device Lett. 40(9), 1370–1373 (2019)

    Article  CAS  Google Scholar 

  26. Y.H. Lee, S.D. Hyun, H.J. Kim et al., Nucleation-limited ferroelectric orthorhombic phase formation in Hf0.5Zr0.5O2 thin films. Adv. Electron. Mater. 5(2), 1800436 (2019)

    Article  Google Scholar 

  27. A.G. Chernikova, M.G. Kozodaev, D.V. Negrov et al., Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces. 10(3), 2701–2708 (2018)

    Article  CAS  Google Scholar 

  28. Z. Fan, J. Xiao, J. Wang et al., Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 108(23), 232905 (2016)

    Article  Google Scholar 

  29. J. Lyu, I. Fina, R. Solanas et al., Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS Appl. Phys. Lett. 1(2), 220–228 (2019)

    CAS  Google Scholar 

  30. J. Lyu, I. Fina, J. Fontcuberta et al., Epitaxial integration on Si (001) of ferroelectric Hf0.5Zr0.5O2 capacitors with high retention and endurance. ACS Appl. Phys. Lett. 11(6), 6224–6229 (2019)

    CAS  Google Scholar 

  31. J. Muller, T.S. BöScke, U. SchröDer et al., Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012)

    Article  Google Scholar 

  32. M.H. Park, Y.H. Lee, H.J. Kim et al., Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27(11), 1811–1831 (2015)

    Article  CAS  Google Scholar 

  33. U. Giegerich, J. Wust, B.-J. Jungnickel, The stability of ferroelectric polarization of PVDF upon irradiation. IEEE Trans. Dielectr. Electr. Insul. 7(3), 353–359 (2000)

    Article  CAS  Google Scholar 

  34. B. Liu, Y. Ma, Y. Zhou et al., Neutron radiation effects in Bi3.15Nd0.85Ti3O12 ferroelectric thin film capacitors. Radiat. Effects Defects Solids 168(2), 115–120 (2013)

    Article  CAS  Google Scholar 

  35. D. Wu, A. Li, H. Ling et al., γ-ray irradiation effect on hysteresis symmetry and data retention of Pt/SrBi2Ta2O9/Pt thin-film capacitors. Appl. Phys. A 73(2), 255–257 (2001)

    Article  CAS  Google Scholar 

  36. H. Al-Shareef, D. Dimos, W. Warren et al., Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films. J. Appl. Phys. 80(8), 4573–4577 (1996)

    Article  CAS  Google Scholar 

  37. Z. Wang, W. Jiang, S.-X. Li et al., Effects of 60Co γ-ray irradiation on microstructure and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films. Nucl. Instrum. Methods Phys. Res., Sect. B 366, 1–5 (2016)

    Article  Google Scholar 

  38. Y. Li, Y. Ma, Y. Zhou, Polarization loss and leakage current reduction in Au/Bi3.15Nd0.85Ti3O12/Pt capacitors induced by electron radiation. Appl. Phys. Lett. 94(4), 042903 (2009)

    Article  Google Scholar 

  39. F. Huang, Y. Wang, X. Liang et al., HfO2-based highly stable radiation-immune ferroelectric memory. IEEE Electron Device Lett. 38(3), 330–333 (2017)

    Article  CAS  Google Scholar 

  40. C. Yang, Y. Han, J. Qian et al., Flexible, temperature-resistant, and fatigue-free ferroelectric memory based on Bi(Fe0.93Mn0.05Ti0.02)O3 thin film. ACS Appl. Mater. Interfaces. 11(13), 12647–12655 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the supports of the National Natural Science Foundation of China (Grant No. 61504115), the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR1513), and the Hunan Provincial Key Research and Development Plan (No. 2017GK2040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangxiang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Liao, J., Peng, Q. et al. Total ionizing dose effects of 60Co γ-rays radiation on HfxZr1−xO2 ferroelectric thin film capacitors. J Mater Sci: Mater Electron 31, 2049–2056 (2020). https://doi.org/10.1007/s10854-019-02724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02724-9

Navigation