Skip to main content
Log in

2D rotary sensor based on magnetic composite of microrods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study presents a two-dimensional rotary sensor employing the impact of an externally exposed magnetic field on the inductance of coils with cores composed of suspended magnetic microrods. A mixture of polydimethylsiloxane and nickel microparticles in the average size of about 8–20 µm was utilized as the inductor coil. Interestingly, the variations in the coils’ inductance were effectively used to sense the rotations in both azimuth and elevation. A readout circuit was designed to convert the coils’ inductance to voltage and demonstrated a conversion coefficient of 8.6 mV/° in azimuth and 19.1 mV/° in elevation. Due to the inexpensive utilized material and relatively simple fabrication process, the proposed rotary sensor can be a great candidate for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M. Sabatini, IEEE Trans. Biomed. Eng. 53, 1346 (2006)

    Article  Google Scholar 

  2. D. Roetenberg, H.J. Luinge, C.T.M. Baten, P.H. Veltink, I.E.E.E. Trans, Neural Syst. Rehabil. Eng. 13, 395 (2005)

    Article  Google Scholar 

  3. J. Naqui, M. Duran-Sindreu, F. Martin. ICECom 2013 (IEEE, 2013), pp. 1–4

  4. Z. Zembaty, P. Bobra, P.A. Bońkowski, S. Kokot, J. Kuś, Sens Actuators A 269, 322 (2018)

    Article  CAS  Google Scholar 

  5. T. Heimfarth, M. Mulato, Sens Actuators A 279, 113 (2018)

    Article  CAS  Google Scholar 

  6. M.H. Afzal, V. Renaudin, G. Lachapelle, Sensors 11, 11390 (2011)

    Article  Google Scholar 

  7. V. Renaudin, M.H. Afzal, G. Lachapelle, J. Locat. Based Serv. 6, 161 (2012)

    Article  Google Scholar 

  8. V. Budinski, D. Donlagic, Sensors (Switzerland) 17, 1 (2017)

    Article  Google Scholar 

  9. S.T. West, C.L. Chen, Appl. Opt. 28, 4206 (1989)

    Article  CAS  Google Scholar 

  10. J.L. Davis, S. Ezekiel, Opt. Lett. 6, 505 (1981)

    Article  CAS  Google Scholar 

  11. W.B. Spillman, P.L. Fuhr, Opt. Fiber Sens. 27, 3081 (1988)

    Google Scholar 

  12. H.J. El-Khozondar, M.S. Müller, T.C. Buck, R.J. El-Khozondar, A.W. Koch., ISOT 2009—Int. Symp. Optomechatronic Technol, p. 219 (2009)

  13. K. Itoh, T. Saitoh, Y. Ohtsuka, J. Light. Technol. 5, 916 (1987)

    Article  Google Scholar 

  14. W.C. Goss, R. Goldstein, M.D. Nelson, H.T. Fearnehaugh, O.G. Ramer, Appl. Opt. 19, 852 (1980)

    Article  CAS  Google Scholar 

  15. A. Tartaglia, M.L. Ruggiero, Am. J. Phys. 83, 427 (2015)

    Article  Google Scholar 

  16. L. Yuan, Z. Liu, J. Yang, Sens Actuators A 136, 216 (2007)

    Article  CAS  Google Scholar 

  17. L. Yuan, L. Zhou, W. Jin, Sens Actuators A 118, 6 (2005)

    Article  CAS  Google Scholar 

  18. A.K. Horestani, S. Member, C. Fumeaux, S. Member, S.F. Al-sarawi, D. Abbott, IEEE Sens. J 13, 1153 (2013)

    Article  Google Scholar 

  19. A.K. Horestani, D. Abbott, C. Fumeaux, IEEE Sens. J. 13, 3014 (2013)

    Article  Google Scholar 

  20. J. Naqui, M. Durán-Sindreu, F. Martín, Sensors 11, 7545 (2011)

    Article  Google Scholar 

  21. Z. Shaterian, A.K. Horestani, C. Fumeaux, in 2015 Ger. Microw. Conf. (IEEE, 2015), pp. 33–35

  22. K. Li, Y. Li, Y. Han, Sensors (Switzerland) 17, 1 (2017)

    Article  Google Scholar 

  23. L. Yin, J. Doyhamboure-Fouquet, X. Tian, D. Li, Composites B 132, 178 (2018)

    Article  CAS  Google Scholar 

  24. J. Naqui, F. Martin, IEEE Trans. Microw. Theory Tech 61, 4700 (2013)

    Article  Google Scholar 

  25. J. Naqui, F. Martin, IEEE Sens. J. 14, 939 (2014)

    Article  Google Scholar 

  26. J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, F. Martín, Sensors 15, 9628 (2015)

    Article  Google Scholar 

  27. J. Mata-Contreras, C. Herrojo, F. Martin, IEEE Trans. Microw. Theory Tech 65, 4450 (2017)

    Article  Google Scholar 

  28. W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, ACS Nano 6, 6122 (2012)

    Article  CAS  Google Scholar 

  29. R. Berger, J.-C. Bissey, J. Kliava, H. Daubric, C. Estournès, J. Magn. Magn. Mater. 234, 535 (2001)

    Article  CAS  Google Scholar 

  30. A.H. Karami, F.K. Horestani, M. Kolahdouz, A.K. Horestani, IEEE Sens. J. 18, 77 (2018)

    Article  CAS  Google Scholar 

  31. H.P. Hall, Hist. Arch. Gen. Radio Co. 1, 64 (1992)

    Google Scholar 

  32. S. Kadu, S. Ahirwar, G. Ramalakshmi, Int. J. Electr. Electron. Res. 3, 181 (2015)

    Google Scholar 

  33. H.S. Kalsi, Electronic Instrumentation, 3e (Tata McGraw-Hill, New York, 2010)

    Google Scholar 

  34. B. Razavi, Design of Analog CMOS Integrated Circuits (Tata McGraw-Hill, New York, 2002)

    Google Scholar 

  35. P. Allen, D. Holberg, CMOS Analog Circuit Design (Oxford University Press, New York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kolahdouz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, A.H., Karami Horestani, F., Kolahdouz, M. et al. 2D rotary sensor based on magnetic composite of microrods. J Mater Sci: Mater Electron 31, 167–174 (2020). https://doi.org/10.1007/s10854-019-02652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02652-8

Navigation