Skip to main content
Log in

High-gain AlGaN/GaN visible-blind avalanche heterojunction phototransistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the fabrication and characterization of the visible-blind AlGaN/GaN-based avalanche heterojunction phototransistors (AHPT) with a collector-up configuration. The fabricated devices with 150-μm-diameter active area exhibit low dark currents of less than 20 pA at collector-emitter voltage (VCE) below 5.0 V. Optical gain as high as 3.6 × 104 was obtained due to the combination of photon-induced current amplification and carrier multiplication at an operating voltage of VCE = 53.5 V, which is much lower than the avalanche breakdown voltage required for GaN-based visible-blind avalanche photodiodes. An ultraviolet–visible rejection ratio of more than 100 was measured at zero bias. Under VCE = 5 V, a peak responsivity of 0.91 A/W was obtained at 335 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.J. Brown, P.P. Chow, M. Razeghi, J.J. Klaassen, J.M. Van Hove, A.M. Wowchak, C. Polley, D. King, Group III-nitride materials for ultraviolet detection applications. Proc. Spie. 3948, 295 (2000)

    Article  Google Scholar 

  2. L. Sun, J. Chen, J. Li, H. Jiang, AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl. Phys. Lett. 97, 191103 (2010)

    Article  Google Scholar 

  3. R.D. Dupuis, D. Yoo, J.-H. Ryou, Y. Zhang, S.-C. Shen, J. Limb, P.D. Yoder, A.D. Hanser, E. Preble, K. Evans, Growth and characterization of high-performance GaN and AlxGa1−xN ultraviolet avalanche photodiodes grown on GaN substrates. MRS Proc. 1040, Q03-03 (2011)

  4. J.C. Carrano, T. Li, D.L. Brown, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C. Campbell, High-speed pin ultraviolet photodetectors fabricated on GaN. Electron. Lett. 34, 1779 (1998)

    Article  CAS  Google Scholar 

  5. J.B. Limb, D. Yoo, J.H. Ryou, W. Lee, S.C. Shen, R.D. Dupuis, M.L. Reed, C.J. Collins, M. Wraback, D. Hanser, E. Preble, N.M. Williams, K. Evans, GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 89, 011112 (2006)

    Article  Google Scholar 

  6. Z. Huang, J. Li, W. Zhang, H. Jiang, AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express 6, 054101 (2013)

    Article  Google Scholar 

  7. Y. Huang, D.J. Chen, H. Lu, K.X. Dong, R. Zhang, Y.D. Zheng, L. Li, Z.H. Li, Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 101, 253516 (2012)

    Article  Google Scholar 

  8. F.Y. Huang, H. Morkoç, GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity. Appl. Phys. Lett. 64, 405–407 (1994)

    Article  CAS  Google Scholar 

  9. J.C. Campbell, G.J. Qua, A.G. Dentai, Optical comparator: a new application for avalanche phototransistors. IEEE Trans. Electron Devices 30, 408–411 (1983)

    Article  Google Scholar 

  10. W. Yang, T. Nohava, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73, 978–980 (1998)

    Article  CAS  Google Scholar 

  11. M.L. Lee, J.K. Sheu, Y.-R. Shu, Ultraviolet bandpass Al0.17Ga0.83N∕GaN heterojunction phototransitors with high optical gain and high rejection ratio. Appl. Phys. Lett. 92, 053506 (2008)

    Article  Google Scholar 

  12. L. Zhang, S. Tang, H. Wu, H. Wang, Z. Wu, H. Jiang, GaN/Al0.1Ga0.9N-based visible-blind double heterojunction phototransistor with a collector-up structure. Phys. Status Solidi. (a) 214, 1600821 (2017)

    Article  Google Scholar 

  13. J. Campbell, A. Dentai, G. Qua, J. Ferguson, Avalanche InP/InGaAs heterojunction phototransistor. IEEE J. Quantum Electron. 19, 1134–1138 (1983)

    Article  Google Scholar 

  14. S.C. Lee, J.N. Kau, H.H. Lin, Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor. Appl. Phys. Lett. 45, 1114–1116 (1984)

    Article  CAS  Google Scholar 

  15. L.Y. Leu, J.T. Gardner, S.R. Forrest, A high gain, high bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 69, 1052–1062 (1991)

    Article  Google Scholar 

  16. S.-C. Shen, T.-T. Kao, H.-J. Kim, Y.-C. Lee, J. Kim, M.-H. Ji, J.-H. Ryou, T. Detchprohm, R.D. Dupuis, GaN/InGaN avalanche phototransistors. Appl. Phys. Express 8, 032101 (2015)

    Article  CAS  Google Scholar 

  17. H. Xing, S.P. DenBaars, U.K. Mishra, Characterization of AlGaN∕GaNp-n diodes with selectively regrown n-AlGaN by metal-organic chemical-vapor deposition and its application to GaN-based bipolar transistors. J. Appl. Phys. 97, 113703 (2005)

    Article  Google Scholar 

  18. E. Bellotti, F. Bertazzi, A numerical study of carrier impact ionization in AlxGa1−xN. J. Appl. Phys. 111, 103711 (2012)

    Article  Google Scholar 

  19. E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, M. Razeghi, Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl. Phys. Lett. 96, 261107 (2010)

    Article  Google Scholar 

  20. M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132–8139 (1995)

    Article  CAS  Google Scholar 

  21. S.M.N. Sze, Kwok K, Physics of Semiconductor Devices, 3rd ed. Chap. 5 (2006)

  22. Q. Cai, Q. Li, M. Li, Y. Tang, J. Wang, J. Xue, D. Chen, H. Lu, R. Zhang, Y. Zheng, Performance modulation for back-illuminated AlGaN ultraviolet avalanche photodiodes based on multiplication scaling. IEEE Photonics J. 11, 1–7 (2019)

    Google Scholar 

  23. N. Chand, P.A. Houston, P.N. Robson, Gain of a heterojunction bipolar phototransistor. IEEE Trans. Electron Devices 32, 622–627 (1985)

    Article  Google Scholar 

  24. C.M. Sun, D.J. Han, L.Y. Sheng, X.R. Zhang, H.J. Zhang, R. Yang, L. Zhang, B.J. Ning, Punch through float-zone silicon phototransistors with high linearity and sensitivity. Nucl. Instrum. Methods Phys. Res., Sect. A 547, 437–449 (2005)

    Article  CAS  Google Scholar 

  25. N. Dyakonova, A. Dickens, M.S. Shur, R. Gaska, J.W. Yang, Temperature dependence of impact ionization in AlGaN–GaN heterostructure field effect transistors. Appl. Phys. Lett. 72, 2562–2564 (1998)

    Article  CAS  Google Scholar 

  26. Z.G. Shao, D.J. Chen, H. Lu, R. Zhang, D.P. Cao, W.J. Luo, Y.D. Zheng, L. Li, H. Li, High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35, 372–374 (2014)

    Article  CAS  Google Scholar 

  27. P.D. Wright, R.J. Nelson, T. Cella, High-gain InGaAsP-InP heterojunction phototransistors. Appl. Phys. Lett. 37, 192–194 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Project (Grant No. 2016YFB0400901), the State Key Program of National Natural Science Foundation of China (Grant No. 61634002), Key Realm R&D Program of GuangDong Province, China (Grant 2019B010132004), and Guangdong Natural Science Foundation (Grant No. 2015A030312011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Song, Z., Sun, L. et al. High-gain AlGaN/GaN visible-blind avalanche heterojunction phototransistors. J Mater Sci: Mater Electron 31, 652–657 (2020). https://doi.org/10.1007/s10854-019-02571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02571-8

Navigation