Skip to main content
Log in

Hyperthermia properties of NixFe3−xO4 nanoparticles: a first-order reversal curve investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (NPs) studied in hyperthermia investigations have shown promising results in combating tumors and slowing cancerous growth. However, no attention has been paid to hyperthermia properties of nickel ferrite NPs with different compositions. Herein, we synthesize NixFe3−xO4 (0 ≤ x ≤ 1) NPs using a co-precipitation method, followed by the investigation of their structural, magnetic, and hyperthermia properties. According to room-temperature hysteresis loop results, the complete replacement of Fe cations by Ni2+ ions leads to a reduction in the saturation magnetization (Ms) from 55.40 to 19.30 emu/g, and an increase in the coercive field (Hc) from 7.33 to 71.40 Oe. Moreover, first-order reversal curve analysis reveals a reduction in the respective superparamagnetic fraction from 77 to 29% when increasing the Ni concentration (x) from 0 to 1. The results on magnetic hyperthermia properties show that Ni0.6Fe2.4O4 and Ni0.8Fe2.2O4 NPs have highest heating efficiency, giving rise to specific loss power values of 170.5 and 169 W/g in a water medium with a concentration of 3 mg/ml, and 200.5 and 198.4 W/g for a concentration of 1.5 mg/ml, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

SLP:

Specific loss power

FORC:

First-order reversal curve

SP:

Superparamagnetic

FESEM:

Field-emission scanning electron microscopy

H c :

Coercive field

M s :

Saturation magnetization

K :

Anisotropy constant

References

  1. R. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596 (1957)

    CAS  Google Scholar 

  2. U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia-and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31(6), 1444–1451 (2004)

    Google Scholar 

  3. A. Tomitaka, J-i Jo, I. Aoki, Y. Tabata, Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflamm. Regen. 34(1), 045–055 (2014)

    CAS  Google Scholar 

  4. A. Tomitaka, Y. Takemura, Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J. Pers. Nanomed. 1(1), 33–37 (2015)

    Google Scholar 

  5. M.A. Abakumov, N.V. Nukolova, M. Sokolsky-Papkov, S.A. Shein, T.O. Sandalova, H.M. Vishwasrao, N.F. Grinenko, I.L. Gubsky, A.M. Abakumov, A.V. Kabanov, VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11(4), 825–833 (2015)

    CAS  Google Scholar 

  6. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)

    CAS  Google Scholar 

  7. J.-P.A.A. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37(2), 223–228 (2008)

    CAS  Google Scholar 

  8. H.M. Joshi, Y.P. Lin, M. Aslam, P. Prasad, E.A. Schultz-Sikma, R. Edelman, T. Meade, V.P. Dravid, Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009)

    CAS  Google Scholar 

  9. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)

    Google Scholar 

  10. A.B. Salunkhe, V.M. Khot, S. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr. Top. Med. Chem. 14(5), 572–594 (2014)

    CAS  Google Scholar 

  11. L. Delaunay, S. Neveu, G. Noyel, J. Monin, A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater. 149(3), L239–L245 (1995)

    CAS  Google Scholar 

  12. R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    CAS  Google Scholar 

  13. I. Obaidat, B. Issa, Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1), 63–89 (2015)

    Google Scholar 

  14. Z. Nemati, J. Alonso, L. Martinez, H. Khurshid, E. Garaio, J. Garcia, M. Phan, H. Srikanth, Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C 120(15), 8370–8379 (2016)

    CAS  Google Scholar 

  15. L.-Y. Lu, L.-N. Yu, X.-G. Xu, Y. Jiang, Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 32(4), 323–331 (2013)

    CAS  Google Scholar 

  16. Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017)

    CAS  Google Scholar 

  17. R. Betancourt-Galindo, O. Ayala-Valenzuela, L. Garcia-Cerda, O.R. Fernandez, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J. Magn. Magn. Mater. 294(2), e33–e36 (2005)

    CAS  Google Scholar 

  18. G. Salazar-Alvarez, R.T. Olsson, J. Sort, W.A. Macedo, J.D. Ardisson, M.D. Baró, U.W. Gedde, J. Nogués, Enhanced coercivity in co-rich near-stoichiometric CoxFe3-xO4+ δ nanoparticles prepared in large batches. Chem. Mater. 19(20), 4957–4963 (2007)

    CAS  Google Scholar 

  19. H. Le Trong, A. Barnabé, L. Presmanes, P. Tailhades, Phase decomposition study in CoxFe3−xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation. Solid State Sci. 10(5), 550–556 (2008)

    Google Scholar 

  20. L. Hu, C. De Montferrand, Y. Lalatonne, L. Motte, A. Brioude, Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3–xO4 nanoparticles within nonpolar and aqueous solvents. J. Phys. Chem. C 116(7), 4349–4355 (2012)

    CAS  Google Scholar 

  21. R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014)

    CAS  Google Scholar 

  22. L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Monolayer assembly of ferrimagnetic CoxFe3–xO4 nanocubes for magnetic recording. Nano Lett. 14(6), 3395–3399 (2014)

    CAS  Google Scholar 

  23. A.M. Wahba, M.B. Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3−xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015)

    CAS  Google Scholar 

  24. E. Fantechi, C. Innocenti, M. Albino, E. Lottini, C. Sangregorio, Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 380, 365–371 (2015)

    CAS  Google Scholar 

  25. J. Mohapatra, M. Xing, J.P. Liu, Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Adv. 8(5), 056725 (2018)

    Google Scholar 

  26. S. Bae, S.W. Lee, Y. Takemura, Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 89(25), 252503 (2006)

    Google Scholar 

  27. S. Larumbe, C. Gomez-Polo, J. Pérez-Landazábal, A. García-Prieto, J. Alonso, M. Fdez-Gubieda, D. Cordero, J. Gómez, Ni doped Fe3O4 magnetic nanoparticles. J. Nanosci. Nanotechnol. 12(3), 2652–2660 (2012)

    CAS  Google Scholar 

  28. M.I. Nugraha, P. Noorlaily, M. Abdullah, F. Iskandar (eds.) Synthesis of NixFe3-xO4 nanoparticles by microwave-assisted coprecipitation and their application in viscosity reduction of heavy oil. Materials Science Forum, Trans Tech Publications (2013)

  29. Y. Xia, B. Wang, G. Wang, X. Liu, H. Wang, MOF-derived porous NixFe3-xO4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem. 3(2), 299–308 (2016)

    CAS  Google Scholar 

  30. X. Sun, X. Zhang, P. Wang, M. Yang, J. Ma, Z. Ding, B. Geng, M. Wang, Y. Ma, Evolution of structure and magnetism from NixFe3−xO4 (x = 0, 0.5, 1 and 1.5) to Ni-Fe alloys and to Ni-Fe-N. Mater. Res. Bull. 95, 261–266 (2017)

    CAS  Google Scholar 

  31. K. Jiang, Y. Liu, Y. Pan, R. Wang, P. Hu, R. He, L. Zhang, G. Tong, Monodisperse NixFe3-xO4 nanospheres: metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci. 404, 40–48 (2017)

    CAS  Google Scholar 

  32. Y. Yunas, W.A. Adi, M. Mashadi, P.A. Rahmy, Magnetic and microwave absorption properties of nickel ferrite (NixFe3-xO4) by HEM technique. Malays. J. Fundam. Appl. Sci. 13(3), 203–206 (2017)

    Google Scholar 

  33. M. Phadatare, J. Meshram, K. Gurav, J.H. Kim, S. Pawar, Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J. Phys. D 49(9), 0950040.0 (2016)

    Google Scholar 

  34. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Google Scholar 

  35. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)

    Google Scholar 

  36. Y. Slimani, M. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(2), 2621–2628 (2019)

    CAS  Google Scholar 

  37. A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. Solid Earth 105(B12), 28461–28475 (2000)

    Google Scholar 

  38. M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves. J. Appl. Phys. 103(7), 07C518 (2008)

    Google Scholar 

  39. S. Samanifar, M. Alikhani, M.A. Kashi, A. Ramazani, A. Montazer, Magnetic alloy nanowire arrays with different lengths: insights into the crossover angle of magnetization reversal process. J. Magn. Magn. Mater. 430, 6–15 (2017)

    CAS  Google Scholar 

  40. M. Mouallem-Bahout, S. Bertrand, O. Pena, Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178(4), 1080–1086 (2005)

    CAS  Google Scholar 

  41. M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009)

    CAS  Google Scholar 

  42. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46(12), 2208–2211 (2011)

    CAS  Google Scholar 

  43. G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18(38), S2935 (2006)

    Google Scholar 

  44. A. Goldman, Modern Ferrite Technology (Springer, Cham, 2006)

    Google Scholar 

  45. G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighianet, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 6–9 (2010)

    Google Scholar 

  46. R. Kambale, P. Shaikh, S. Kamble, Y. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1–2), 599–603 (2009)

    CAS  Google Scholar 

  47. M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116(12), 124304 (2014)

    Google Scholar 

  48. B. Mehdaoui, R. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys. Rev. B 87(17), 174419 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 159023/59.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Almasi Kashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasemian, A.R., Almasi Kashi, M. & Ramazani, A. Hyperthermia properties of NixFe3−xO4 nanoparticles: a first-order reversal curve investigation. J Mater Sci: Mater Electron 30, 21278–21287 (2019). https://doi.org/10.1007/s10854-019-02501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02501-8

Navigation