Skip to main content
Log in

Low-firing Li4Mg3Ti2O9–CaTiO3 composite ceramics with temperature stable microwave dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nanopowders of Li4Mg3Ti2O9 (LMT, 37 nm) and CaTiO3 (CT, 110 nm) compounds were synthesized through a sol–gel method and calcined at 600 °C, about 450 °C lower than that required by conventional ball-milling method. The (1 − x)LMT-xCT (0.05 ≤ x ≤ 0.2) composite ceramics doped with 4 wt% LiF were prepared for low-temperature co-fired ceramics (LTCC). A near-zero τf value was obtained by adjusting composition x of CT. 4 wt% LiF-doped 0.85LMT-0.15CT ceramics sintered at 850 °C possess optimum microwave dielectric properties: εr = 19.5, Q × f = 25,790 GHz, τf = − 5.8 ppm/°C. Such sample was compatible with Ag electrodes, which indicates the ceramic is a promising material for LTCC application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001)

    Article  CAS  Google Scholar 

  2. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino, Dielectric materials, devices, and circuits. IEEE Microw. Theory 50, 706 (2002)

    Article  CAS  Google Scholar 

  3. T.A. Vanderah, Talking ceramics. Science 298, 1182 (2002)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57 (2008)

    Article  CAS  Google Scholar 

  5. H. Ohsato, Research and development of microwave dielectric ceramics for wireless communication. J. Ceram. Soc. Japn. 113, 703 (2005)

    Article  CAS  Google Scholar 

  6. M.Z. Dang, H.S. Ren, X.G. Yao, H.Y. Peng, T.Y. Xie, H.X. Lin, L. Luo, Investigation of phase composition and microwave dielectric properties of MgO-Ta2O5 ceramics with ultrahigh Qf value. J. Am. Ceram. Soc. 101, 3026 (2018)

    Article  CAS  Google Scholar 

  7. J. Liang, W.Z. Lu, J.M. Wu, J.G. Guan, Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures. Mater. Sci. Eng. B 176, 99 (2011)

    Article  CAS  Google Scholar 

  8. L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO addition. J. Am. Ceram. Soc. 93, 3614 (2010)

    Article  CAS  Google Scholar 

  9. D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver. J. Am. Ceram. Soc. 91, 4115 (2008)

    Article  CAS  Google Scholar 

  10. J.J. Bian, J.Y. Wu, L. Wang, Structural evolution, sintering behavior and microwave dielectric properties of (1-x)Li3NbO4xLiF (0 ≤ x ≤ 0.9). J. Eur. Ceram. Soc. 32, 1251 (2012)

    Article  CAS  Google Scholar 

  11. L.X. Pang, H. Liu, D. Zhou, J.X. Yang, D.J. Li, W.G. Liu, Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics. J. Alloys. Compd. 525, 22 (2012)

    Article  CAS  Google Scholar 

  12. Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, H.W. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625 (2016)

    Article  CAS  Google Scholar 

  13. Y.W. Tseng, J.Y. Chen, Y.C. Kuo, C.L. Huang, Low-loss microwave dielectrics using rock salt oxide Li2MgTiO4. J. Alloys. Compd. 509, L308 (2011)

    Article  CAS  Google Scholar 

  14. H.F. Zhou, N. Wang, J.Z. Gong, G.C. Fan, Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. J. Alloys. Compd. 688, 8 (2016)

    Article  CAS  Google Scholar 

  15. J.X. Bi, Y.J. Niu, H.T. Wu, Li4Mg3Ti2O9: a novel low-loss microwave dielectric ceramic for LTCC applications. Ceram. Int. 43, 7522 (2017)

    Article  CAS  Google Scholar 

  16. D.D. Liu, P. Liu, B.C. Guo, Low-temperature sintering and microwave dielectric properties of Li4Mg3Ti2O9 ceramics by a sol-gel method. J. Mater. Sci.: Mater. Electron. 29, 10264 (2018)

    CAS  Google Scholar 

  17. S.D. Jesus, C.A. Cortes-Escobedo, A.M. Bolarm-Miro, A. Lira-Hernandez, G. Torres-Villasenor, Crystal structure and mixed ionic-electronic conductivity of La1-xCaxMnO3 (0 ≤ x ≤ 0.8) produced by mechanosynthesis. Ceram. Int. 38, 2139 (2012)

    Article  Google Scholar 

  18. A. Goktas, I.H. Mutlu, A. Kawashi, Growth and characterization of La1-xAxMnO3 (A = Ag and K, x = 0.33) epitaxial and polycrystalline manganite thin films derived by sol-gel dip-coating technique. Thin Solid Films 520, 6138 (2012)

    Article  CAS  Google Scholar 

  19. Y.L. Li, H. Zhang, S.A. Yang, Q.H. Chen, Q.M. Chen, Improved temperature coefficient of resistance in La1-xCaxMnO3:Ag0.2 (0.25 ≤ x ≤ 0.33) ceramics prepared by sol-gel method. J. Alloys. Compd. 800, 64 (2019)

    Article  CAS  Google Scholar 

  20. C.L. Huang, J.Y. Chen, G.S. Huang, A new low-loss dielectric using CaTiO3-modified (Mg0.95Mn0.05)TiO3 ceramics for microwave applications. J. Alloys. Compd. 499, 48 (2010)

    Article  CAS  Google Scholar 

  21. G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10, 492 (2013)

    Article  CAS  Google Scholar 

  22. F.F. Gu, G.H. Chen, C.L. Yuan, C.R. Zhou, T. Yang, Y. Yang, Low temperature sintering and microwave dielectric properties of 0.2Ca0.8Sr0.2TiO3-0.8Li0.5Sm0.5TiO3 ceramics with BaCu(B2O5) additive and TiO2 dopant. Mater. Res. Bull. 61, 245 (2015)

    Article  CAS  Google Scholar 

  23. G.G. Yao, P. Liu, H.W. Zhang, Low-temperature sintering and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–(Ca0.8Sr0.2)TiO3 composite ceramics. J. Am. Ceram. Soc. 96, 3114 (2013)

    Article  CAS  Google Scholar 

  24. W.E. Roake, The systems CaF2-LiF and CaF2-LiF-MgF2. J. Electrochem. Soc. 104, 661 (1957)

    Article  CAS  Google Scholar 

  25. A. Thorvaldsen, The intercept method-2. Determination of spatial grain size. Acta Mater. 45, 595 (1997)

    Article  CAS  Google Scholar 

  26. Y. Lida, Evaporation of lithium oxide from solid solution of lithium oxide in nickel oxide. J. Am. Ceram. Soc. 43, 171 (1960)

    Article  Google Scholar 

  27. Z.F. Fu, J.L. Ma, P. Liu, Y. Liu, Novel temperature stable Li2Mg3TiO6-SrTiO3 composite ceramics with high Q for LTCC application. Mater. Chem. Phys. 200, 264 (2017)

    Article  CAS  Google Scholar 

  28. S.M. Zhai, P. Liu, Z.F. Fu, J.P. Li, The temperature stable Li2Mg3TiO6 microwave dielectric ceramics with CaF2 addition. J. Mater. Sci.: Mater. Electron. 30, 5404 (2019)

    CAS  Google Scholar 

  29. C.L. Huang, S.H. Liu, Low loss microwave dielectrics in the (Mg1-xMnx)2TiO4 ceramics. J. Am. Ceram. Soc. 91, 3428 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Fundation of China (Grant No. 51572162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Liu, P., Liu, D. et al. Low-firing Li4Mg3Ti2O9–CaTiO3 composite ceramics with temperature stable microwave dielectric properties. J Mater Sci: Mater Electron 30, 20002–20009 (2019). https://doi.org/10.1007/s10854-019-02367-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02367-w

Navigation