Skip to main content
Log in

Structural, optical and dielectric investigations of electrodeposited p-type Cu2O

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrodeposition technique is employed to prepare cuprous oxide (Cu2O) thin film on fluorine-doped tin oxide (FTO) conducting glass substrate through the reduction of copper lactate in alkaline solution at pH = 12.25. Structural, optical and dielectric properties of the prepared film is investigated by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), UV–Visible absorbance, photoluminescence (PL) and broadband dielectric spectroscopy (BDS). The structural means (XRD, SEM and EDS) revealed the formation of self-assembled cubic microstructure of Cu2O with average grain size of around 1.5 μm. The UV–Vis absorbance spectrum gives optical band gap of 2.05 eV. The PL spectrums confirmed the presence of defect centers ascribed to various forms of oxygen \((V_{O}^{1 + } ,\,V_{O}^{2 + } )\) and copper (\(V_{Cu}^{ 1 + }\)) vacancies which are responsible for the conduction in the Cu2O film. The conduction mechanism in the Cu2O film is successfully described by the correlated barrier hopping (CBH) model in which bipolaron hopping become prominent. The density of defect states N, the effective barrier height W and the hopping distance Rω are also calculated based on the CBH model. Two dielectric relaxation processes (β1 and β2) with Arrhenius temperature dependence and activation energies of 0.31 and 0.48 eV are observed. The fast β2-relaxation process with activation energy of 0.48 eV is attributed to the Maxwell–Wagner-Sillars (MWS) polarization while the slow β1-relaxation process with activation energy of 0.31 eV is due to the hopping of the oxygen and copper vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Z. Yang, Prog. Mater Sci. 96, 111–173 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.006

    Article  CAS  Google Scholar 

  2. X. Li, H. Gao, C.J. Murphy, L. Gou, Nano Lett. 4, 1903–1907 (2004). https://doi.org/10.1021/nl048941n

    Article  CAS  Google Scholar 

  3. Y. Qian, F. Ye, J. Xu, Z.G. Le, Int. J. Electrochem. Sci. 7, 10063–10073 (2012)

    CAS  Google Scholar 

  4. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nature 407, 496 (2000). https://doi.org/10.1038/35035045

    Article  CAS  Google Scholar 

  5. J. Kondo, Chem. Commun. (1998). https://doi.org/10.1039/a707440i

    Article  Google Scholar 

  6. B. Lefez, M. Lenglet, Chem. Phys. Lett. 179, 223–226 (1991). https://doi.org/10.1016/0009-2614(91)87027-9

    Article  CAS  Google Scholar 

  7. D. Snoke, Science 273, 1351–1352 (1996). https://doi.org/10.1126/science.273.5280.1351

    Article  CAS  Google Scholar 

  8. A. Musa, T. Akomolafe, M. Carter, Sol. Energy Mater. Sol. Cells 51, 305–316 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867–871 (2006). https://doi.org/10.1021/cm052256f

    Article  CAS  Google Scholar 

  10. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, A. Bakin, Sol. Energy 122, 1193–1198 (2015). https://doi.org/10.1016/j.solener.2015.11.002

    Article  CAS  Google Scholar 

  11. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454–461 (2016). https://doi.org/10.1016/j.solmat.2015.11.015

    Article  CAS  Google Scholar 

  12. Y. Yang, M. Pritzker, Y. Li, Thin Solid Films 676, 42–53 (2019). https://doi.org/10.1016/j.tsf.2019.02.014

    Article  CAS  Google Scholar 

  13. B. Balamurugan, B. Mehta, Thin Solid Films 396, 90–96 (2001). https://doi.org/10.1016/S0040-6090(01)01216-0

    Article  CAS  Google Scholar 

  14. D.A. Firmansyah, T. Kim, S. Kim, K. Sullivan, M.R. Zachariah, D. Lee, Langmuir 25, 7063–7071 (2009). https://doi.org/10.1021/la9001175

    Article  CAS  Google Scholar 

  15. P. Liu, Z. Li, W. Cai, M. Fang, X. Luo, RSC Adv. 1, 847–851 (2011). https://doi.org/10.1039/C1RA00261A

    Article  CAS  Google Scholar 

  16. K. Suzuki, N. Tanaka, A. Ando, H. Takagi, J. Am. Ceram. Soc. 94, 2379–2385 (2011). https://doi.org/10.1111/j.1551-2916.2011.04413.x

    Article  CAS  Google Scholar 

  17. R.V. Kumar, Y. Mastai, Y. Diamant, A. Gedanken, J. Mater. Chem. 11, 1209–1213 (2001). https://doi.org/10.1039/b005769j

    Article  CAS  Google Scholar 

  18. M.A. Bhosale, K.D. Bhatte, B.M. Bhanage, Powder Technol. 235, 516–519 (2013). https://doi.org/10.1016/j.powtec.2012.11.006

    Article  CAS  Google Scholar 

  19. B. Yadav, A. Yadav, Int. J. Green Nanotechnol. 1, M16–M31 (2009). https://doi.org/10.1080/19430840902931541

    Article  Google Scholar 

  20. Y. Sui, Y. Zeng, W. Zheng, B. Liu, B. Zou, H. Yang, Sens. Actuators B 171, 135–140 (2012). https://doi.org/10.1016/j.snb.2012.01.069

    Article  CAS  Google Scholar 

  21. L. Gou, C.J. Murphy, J. Mater. Chem. 14, 735–738 (2004). https://doi.org/10.1039/B311625E

    Article  CAS  Google Scholar 

  22. Y. Bai, T. Yang, Q. Gu, G. Cheng, R. Zheng, Powder Technol. 227, 35–42 (2012). https://doi.org/10.1016/j.powtec.2012.02.008

    Article  CAS  Google Scholar 

  23. M.H. Huang, C.-Y. Chiu, J. Mater. Chem. A 1, 8081–8092 (2013). https://doi.org/10.1016/j.powtec.2012.02.008

    Article  CAS  Google Scholar 

  24. L. Gou, C.J. Murphy, Nano Lett. 3, 231–234 (2003). https://doi.org/10.1021/nl0258776

    Article  CAS  Google Scholar 

  25. Stareck JE (1941) Google Patents, 1941. https://patents.google.com/patent/US2250556A/en

  26. G. Riveros, A. Garmendia, D. Ramirez, M. Tejos, P. Grez, H. Gomez, E. Dalchiele, J. Electrochem. Soc. 160(1), D28–D33 (2013)

    Article  CAS  Google Scholar 

  27. S. Laidoudi, A. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013). https://doi.org/10.1088/0268-1242/28/11/115005

    Article  CAS  Google Scholar 

  28. S. Barman, D. Sarma, J. Phys. 4, 7607 (1992). https://doi.org/10.1088/0953-8984/4/37/008

    Article  CAS  Google Scholar 

  29. Z.-X. Shen, R. List, D. Dessau, F. Parmigiani, A. Arko, R. Bartlett, B. Wells, I. Lindau, W. Spicer, Phys. Rev. B 42, 8081 (1990). https://doi.org/10.1103/PhysRevB.42.8081

    Article  CAS  Google Scholar 

  30. A. Önsten, M. Månsson, T. Claesson, T. Muro, T. Matsushita, T. Nakamura, T. Kinoshita, U.O. Karlsson, O. Tjernberg, Phys. Rev. B 76, 115127 (2007). https://doi.org/10.1103/PhysRevB.76.115127

    Article  CAS  Google Scholar 

  31. A. Jolk, C. Klingshirn, Physica Status Solidi (b) 206, 841–850 (1998). https://doi.org/10.1002/(SICI)1521-3951

    Article  CAS  Google Scholar 

  32. C. Uihlein, D. Fröhlich, R. Kenklies, Phys. Rev. B 23, 2731 (1981). https://doi.org/10.1002/(SICI)1521-3951(199804)206:2%3c841:AID-PSSB841%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  33. N. Serin, T. Serin, Ş. Horzum, Y. Celik, Semicond. Sci. Technol. 20, 398 (2005). https://doi.org/10.1088/0268-1242/20/5/012

    Article  CAS  Google Scholar 

  34. M. Beg, S. Shapiro, Phys. Rev. B 13, 1728 (1976). https://doi.org/10.1103/PhysRevB.13.1728

    Article  CAS  Google Scholar 

  35. R. Mittal, S. Chaplot, S. Mishra, P.P. Bose, Phys. Rev. B 75, 174303 (2007). https://doi.org/10.1103/PhysRevB.75.174303

    Article  CAS  Google Scholar 

  36. E. Ruiz, S. Alvarez, P. Alemany, R.A. Evarestov, Phys. Rev. B 56, 7189 (1997). https://doi.org/10.1103/PhysRevB.56.7189

    Article  CAS  Google Scholar 

  37. D.O. Scanlon, G.W. Watson, Phys. Rev. Lett. 106, 186403 (2011). https://doi.org/10.1103/PhysRevLett.106.186403

    Article  CAS  Google Scholar 

  38. X. Jiang, M. Zhang, S. Shi, G. He, X. Song, Z. Sun, Nanoscale Res. Lett. 9, 219 (2014). https://doi.org/10.1186/1556-276X-9-219

    Article  CAS  Google Scholar 

  39. C. Das, A.K. Singh, Y. Heo, G. Aggarwal, S.K. Maurya, J. Seidel, B. Kavaipatti, J. Phys. Chem. C 122, 1466–1476 (2018). https://doi.org/10.1021/acs.jpcc.7b10103

    Article  CAS  Google Scholar 

  40. J. Major, Y. Proskuryakov, K. Durose, G. Zoppi, I. Forbes, Sol. Energy Mater. Sol. Cells 94, 1107–1112 (2010). https://doi.org/10.1016/j.solmat.2010.02.034

    Article  CAS  Google Scholar 

  41. J. Chen, T. Shi, X. Li, B. Zhou, H. Cao, Y. Wang, Appl. Phys. Lett. 108, 053302 (2016). https://doi.org/10.1063/1.4941238

    Article  CAS  Google Scholar 

  42. Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, Y. Lu, D. Shen, X. Fan, Semicond. Sci. Technol. 20, 44 (2004). https://doi.org/10.1088/0268-1242/20/1/

    Article  CAS  Google Scholar 

  43. I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Beniaiche, A. Azizi, J. Electron. Mater. 47, 2000–2008 (2018). https://doi.org/10.1007/s11664-017-6001-z

    Article  CAS  Google Scholar 

  44. O. Reyes, D. Maldonado, J. Escorcia-García, P. Sebastian, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9110-4

    Article  Google Scholar 

  45. M. Takahata, N. Naka, Phys. Rev. B 98, 195205 (2018). https://doi.org/10.1103/PhysRevB.98.195205

    Article  CAS  Google Scholar 

  46. A. Schönhals, F. Kremer, Analysis of dielectric spectra (Broadband dielectric spectroscopy. Springer, Heidelberg, 2003), pp. 59–98

    Google Scholar 

  47. J. Koshy, S.M. Soosen, A. Chandran, K. George, J. Semicond. 36, 122003 (2015). https://doi.org/10.1088/1674-4926/36/12/122003

    Article  CAS  Google Scholar 

  48. S. Sarkar, P.K. Jana, B. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006). https://doi.org/10.1063/1.2393001

    Article  CAS  Google Scholar 

  49. K. Deepthi, T. Pandiyarajan, B. Karthikeyan, J. Mater. Sci. 24, 1045–1051 (2013). https://doi.org/10.1007/s10854-012-0875-6

    Article  CAS  Google Scholar 

  50. T. Serin, A. Yildiz, Ş.H. Şahin, N. Serin, Physica B 406, 575–578 (2011). https://doi.org/10.1016/j.physb.2010.11.044

    Article  CAS  Google Scholar 

  51. T. Serin, A. Yildiz, Ş. Şahin, N. Serin, Physica B 406, 3551–3555 (2011). https://doi.org/10.1016/j.physb.2011.06.021

    Article  CAS  Google Scholar 

  52. Q. Li, M. Xu, H. Fan, H. Wang, B. Peng, C. Long, Y. Zhai, Mater. Sci. Eng., B 178, 496–501 (2013). https://doi.org/10.1016/j.mseb.2013.02.004

    Article  CAS  Google Scholar 

  53. McCrum NG, Read BE, Williams G (1967) Doi: 10.1002/app.1969.070130214

  54. Cullity B, Stock S (2001) Elements of x-ray diffraction 167–171. ISBN-13: 978-0201610918

  55. L. Wang, N. De Tacconi, C. Chenthamarakshan, K. Rajeshwar, M. Tao, Thin Solid Films 515, 3090–3095 (2007). https://doi.org/10.1016/j.tsf.2006.08.041

    Article  CAS  Google Scholar 

  56. A.H. Alami, A. Allagui, H. Alawadhi, Renew. Energy 82, 21–25 (2015). https://doi.org/10.1016/j.renene.2014.08.040

    Article  CAS  Google Scholar 

  57. A.J. Nozik, G. Conibeer, M.C. Beard, Advanced concepts in photovoltaics (Royal Society of Chemistry, London, 2014)

    Book  Google Scholar 

  58. J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  59. F. Urbach, Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  60. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1741–1745 (1996). https://doi.org/10.1063/1.360963

    Article  CAS  Google Scholar 

  61. S. Pelegrini, M.A. Tumelero, I.S. Brandt, R.D. Pace, R. Faccio, A. Pasa, J. Appl. Phys. 123(16), 161567 (2018). https://doi.org/10.1063/1.5004782

    Article  CAS  Google Scholar 

  62. C. Teh, F. Weichman, Can. J. Phys. 61, 1423–1427 (1983). https://doi.org/10.1139/p83-182

    Article  CAS  Google Scholar 

  63. H. Solache-Carranco, G. Juárez-Díaz, A. Esparza-García, M. Briseño-García, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, R. Peña-Sierra, J. Lumin. 129, 1483–1487 (2009). https://doi.org/10.1016/j.jlumin.2009.02.033

    Article  CAS  Google Scholar 

  64. T. Ito, T. Masumi, J. Phys. Soc. Jpn. 66, 2185–2193 (1997). https://doi.org/10.1143/JPSJ.66.2185

    Article  CAS  Google Scholar 

  65. J. Krustok, H. Collan, K. Hjelt, J. Appl. Phys. 81, 1442–1445 (1997). https://doi.org/10.1063/1.363903

    Article  CAS  Google Scholar 

  66. W.J. Moore, B. Selikson, J. Chem. Phys. 19, 1539–1543 (1951). https://doi.org/10.1063/1.1748118

    Article  CAS  Google Scholar 

  67. E.A. Goldstein, T.M. Gür, R.E. Mitchell, Corros. Sci. 99, 53–65 (2015). https://doi.org/10.1016/j.corsci.2015.05.067

    Article  CAS  Google Scholar 

  68. A.A. Ali, M.M. Elmahdy, A. Sarhan, M.I. Abdel Hamid, M.T. Ahmed, Polym. Int. 67, 1615–1628 (2018). https://doi.org/10.1002/pi.5685

    Article  CAS  Google Scholar 

  69. A.K. Jonscher, Universal relaxation law: a sequel to dielectric relaxation in solids (Chelsea Dielectrics Press, Chelsea, 1996)

    Google Scholar 

  70. I.M. El-Sherbiny, M.M. Elmahdy, J. Appl. Polym. Sci. 118, 2134–2145 (2010). https://doi.org/10.1002/app.32517

    Article  CAS  Google Scholar 

  71. R. Kužel, F. Weichman, J. Appl. Phys. 41, 271–279 (1970). https://doi.org/10.1063/1.1658333

    Article  Google Scholar 

  72. M. Nolan, S.D. Elliott, Phys. Chem. Chem. Phys. 8, 5350–5358 (2006). https://doi.org/10.1039/B611969G

    Article  CAS  Google Scholar 

  73. P. Extance, S. Elliott, E. Davis, Phys. Rev. B 32, 8148 (1985). https://doi.org/10.1103/PhysRevB.32.8148

    Article  CAS  Google Scholar 

  74. A. Long, Adv. Phys. 31, 553–637 (1982). https://doi.org/10.1080/00018738200101418

    Article  CAS  Google Scholar 

  75. S. Elliott, Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971

    Article  CAS  Google Scholar 

  76. G.-M. Zhao, M. Hunt, H. Keller, K. Müller, Nature 385, 236 (1997). https://doi.org/10.1038/385236a0

    Article  CAS  Google Scholar 

  77. R. Gupta, K. Ghosh, P. Kahol, Physica E 41, 876–878 (2009). https://doi.org/10.1016/j.physe.2008.12.025

    Article  CAS  Google Scholar 

  78. Y.S. Lee, M.T. Winkler, S.C. Siah, R. Brandt, T. Buonassisi, Appl. Phys. Lett. 98, 192115 (2011). https://doi.org/10.1063/1.3589810

    Article  CAS  Google Scholar 

  79. S. Ishizuka, S. Kato, T. Maruyama, K. Akimoto, Jpn. J. Appl. Phys. 40, 2765 (2001). https://doi.org/10.1143/JJAP.40.2765

    Article  CAS  Google Scholar 

  80. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Physica Status Solidi (a) 206(9), 2192–2197 (2009). https://doi.org/10.1002/pssa.200881795

    Article  CAS  Google Scholar 

  81. G. Pollack, D. Trivich, J. Appl. Phys. 46, 163–172 (1975). https://doi.org/10.1063/1.321312

    Article  CAS  Google Scholar 

  82. W.K. Kipnusu, M.M. Elmahdy, M. Elsayed, R. Krause-Rehberg, F. Kremer, Macromolecules 52, 1864–1873 (2019). https://doi.org/10.1021/acs.macromol.8b02687

    Article  CAS  Google Scholar 

  83. C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, H. Wang, J. Am. Ceram. Soc. 98, 148–153 (2015). https://doi.org/10.1111/jace.13250

    Article  CAS  Google Scholar 

  84. R. Karsthof, M. Grundmann, A.M. Anton, F. Kremer, Phys. Rev. B 99, 235201 (2019). https://doi.org/10.1103/PhysRevB.99.235201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University in Al-Kharj, Saudi Arabia for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdy M. Elmahdy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmahdy, M.M., El-Shaer, A. Structural, optical and dielectric investigations of electrodeposited p-type Cu2O. J Mater Sci: Mater Electron 30, 19894–19905 (2019). https://doi.org/10.1007/s10854-019-02356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02356-z

Navigation