Skip to main content
Log in

Construction of BiOBrxI1−x/MXene Ti3C2Tx composite for improved photocatalytic degradability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Forming BiOBrxI1−x solid solution structural photocatalyst has been regarded as an efficient method for photocatalytic property of bismuth oxyhalides (Bi–O–X, X = Br, Cl and I) photocatalysts. In this work, in order to further improve the photocatalytic property of BiOBrxI1−x, MXene Ti3C2Tx material was used to construct heterostructural photocatalyst with BiOBrxI1−x. The MXene Ti3C2Tx was achieved by etching the Ti3AlC2 with HF and its layered structure was firstly confirmed by X-ray diffraction, scanning electron microscope and high resolution transmission electron microscope. The BiOBr0.5I0.5/MXene Ti3C2Tx (BOT-5) composite was achieved through a simple synthesis process and its heterostructure was determined by efficient characterizations. Through degradation experiments, the improved photocatalytic degradation property for Rhodamine B (RhB) and phenol of BOT-5 was observed and its excellent chemical stability was also verified meanwhile. The photocatalytic mechanism of BOT-5 was further explored in this work. Through efficient experimental strategies, the enhanced carrier photocatalysis of BOT-5 together with its inhibited extinction photocatalysis was verified. Benefiting from the enhanced carrier photocatalysis of BOT-5, more superoxide and hydroxyl radicals were generated and supported its enhanced photocatalytic degradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Y. Bai, L. Ye, W. Li, X. Shi, P. Wang, W. Bai, P. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B 194, 98–104 (2016)

    Article  CAS  Google Scholar 

  2. K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)

    Article  CAS  Google Scholar 

  3. F. Jie, Y. Tian, B. Chang, F. Xi, X. Dong, BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J. Mater. Chem. 22, 21159–21166 (2012)

    Article  Google Scholar 

  4. M. Yan, L. Wen, Z. Wang, D. Cao, Y. Fang, L. Yong, Building of anti-restack 3D BiOCl hierarchitecture by ultrathin nanosheets towards enhanced photocatalytic activity. Appl. Catal. B 176, 331–337 (2015)

    Google Scholar 

  5. S. Meng, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J. Hazard. Mater. 167, 803–809 (2009)

    Article  Google Scholar 

  6. L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 47, 6951–6953 (2011)

    Article  CAS  Google Scholar 

  7. H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054–7056 (2011)

    Article  CAS  Google Scholar 

  8. D. Zhang, M. Wen, B. Jiang, G. Li, J.C. Yu, Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment. J. Hazard. Mater. 211–212, 104–111 (2012)

    Article  Google Scholar 

  9. Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Inter. 8, 27661–27668 (2016)

    Article  CAS  Google Scholar 

  10. L. Ye, C. Han, Z. Ma, Y. Leng, J. Li, X. Ji, D. Bi, H. Xie, Z. Huang, Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem. Eng. J. 307, 311–318 (2017)

    Article  CAS  Google Scholar 

  11. Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1-x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl. Surf. Sci. 279, 374–379 (2013)

    Article  CAS  Google Scholar 

  12. Q. Zhao, X. Liu, Y. Xing, Z. Liu, C. Du, Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J. Mater. Sci. 52, 2117–2130 (2017)

    Article  CAS  Google Scholar 

  13. J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal. Commun. 13, 63–68 (2011)

    Article  CAS  Google Scholar 

  14. Y. Bai, X. Shi, P.Q. Wang, H. Xie, L. Ye, Photocatalytic mechanism regulation of bismuth oxyhalogen via changing atomic assembly method. ACS Appl. Mater. Interfaces 9, 30273–30277 (2017)

    Article  CAS  Google Scholar 

  15. X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, L. Ye, Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3- adsorption. Appl. Catal. B 243, 322–329 (2019)

    Article  CAS  Google Scholar 

  16. Y. Bai, X. Shi, P. Wang, L. Wnag, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem. Eng. J. 365, 34–42 (2019)

    Article  Google Scholar 

  17. V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J. Navío, M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B 225, 197–206 (2018)

    Article  CAS  Google Scholar 

  18. R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. 169, 926–932 (2009)

    Article  CAS  Google Scholar 

  19. A. Ali, A. Belaidi, S. Ali, M. Helal, K. Mahmoud, Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci.: Mater. Electron. 27, 5440–5445 (2016)

    CAS  Google Scholar 

  20. C. Shi, M. Beidaghi, M. Naguib, O. Mashtalir, Y. Gogotsi, S. Billinge, Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. Phys. Rev. Lett. 29, 1211–1215 (2014)

    Google Scholar 

  21. T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang, Synthesis of two-dimensional Ti3C2 MXene using HCl + LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2016)

    Article  Google Scholar 

  22. K. Rasool, M. Helal, A. Ali, C. Ren, Y. Gogotsi, K. Mahmoud, Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016)

    Article  CAS  Google Scholar 

  23. X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018)

    Article  CAS  Google Scholar 

  24. Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dall Agnese, G. Chen, X. Wang, g-C3N4/Ti3C2 MXene composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 9124–9131 (2018)

    Article  CAS  Google Scholar 

  25. C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji, Z. Tong, W. Hou, Y. Zhang, J. Xu, Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2019)

    Article  CAS  Google Scholar 

  26. X. Guo, X. Xie, S. Choi, Y. Zhao, G. Wang, Sb2O3/MXene(Ti3C2) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017)

    Article  CAS  Google Scholar 

  27. H. Liu, Y. Su, Z. Chen, Z. Jin, Y. Wang, Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)

    Article  CAS  Google Scholar 

  28. L. Sun, L. Xiang, X. Zhao, C. Jia, J. Yang, Z. Jin, X. Cheng, W. Fan, Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal. 5, 3540–3551 (2015)

    Article  CAS  Google Scholar 

  29. Y. Wu, H. Wang, W. Tu, Y. Liu, Y. Tan, X. Yuan, J. Chew, Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 347, 412–422 (2018)

    Article  CAS  Google Scholar 

  30. L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P. Wong, Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B 187, 281–290 (2016)

    Article  CAS  Google Scholar 

  31. L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energy Mater. Sol. Cells 144, 732–739 (2016)

    Article  CAS  Google Scholar 

  32. A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J. Vilatela, Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl. Catal. B 179, 574–582 (2015)

    Article  CAS  Google Scholar 

  33. M. Ou, D. Fan, Z. Wei, Z. Wu, Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2CO3-BiOI solid solutions. Chem. Eng. J. 255, 650–658 (2014)

    Article  CAS  Google Scholar 

  34. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017)

    Article  CAS  Google Scholar 

  35. H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, L. Zhang, Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal. 6, 8276–8285 (2016)

    Article  CAS  Google Scholar 

  36. H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan, Y. Xie, Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 14, 1760–1766 (2018)

    Article  Google Scholar 

  37. S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 21, 1800136 (2018)

    Article  Google Scholar 

  38. C. Jing, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem. Eng. J. 185–186, 91–99 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51702270), the Scientific Research Starting Project of SWPU (Grant No. 2015QHZ001), Young Scholars Development Fund of SWPU (Grant No. 201499010100), Open Fund (Grant No. 201601) of State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingquan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, P., Lan, L. et al. Construction of BiOBrxI1−x/MXene Ti3C2Tx composite for improved photocatalytic degradability. J Mater Sci: Mater Electron 30, 19804–19812 (2019). https://doi.org/10.1007/s10854-019-02346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02346-1

Navigation