Skip to main content
Log in

Microwave absorbing and infrared radiation properties of Al@multi-walled carbon nanotubes composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Al@MWCNTs (multi-walled carbon nanotubes) composites were prepared by a one-step hydrothermal method. The effects of the morphology and mass ratio of Al@MWCNTs on microwave absorption were studied. The Al@MWCNTs were also found to participate in infrared emissivity. A large number of MWCNTs were interconnected and interspersed between Al sheets, forming a conductive network. As the mass ratio of MWCNTs in the composite was increased, the microwave absorption performance became stronger, and the infrared emissivity remained excellent. When the mass ratio of MWCNTs:Al was 3:20, the minimum reflection loss of the composite at 10.88 GHz was − 39.24 dB, and the effective absorption bandwidth below − 10 dB were 3.04 GHz (9.2–12.24 GHz), the matching thickness was 2 mm, and the infrared emissivity was only 0.67. In this paper, Al powder, a composite material with low infrared emissivity, was creatively used to achieve the superior material bifunctional absorption of MWCNTs, providing a novel and effective way to design other excellent bifunctional materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.Q. Chen, Z. Wu, Z.L. Zhang, L.Y. Heng, S. Wang, Y.H. Zhou, J. Magn. Magn. Mater. 476, 349–354 (2019)

    CAS  Google Scholar 

  2. Z.L. Zhang, Y.Y. Lv, X.Q. Chen, Z. Wu, Y.Y. He, L. Zhang, Y.H. Zhou, J. Magn. Magn. Mater. 487, 165334 (2019)

    CAS  Google Scholar 

  3. Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, ACS Appl. Mater. Interfaces 8, 34686–34698 (2016)

    CAS  Google Scholar 

  4. L. Wang, X. Li, Q.Q. Li, X.F. Yu, Y.H. Zhao, J. Zhang, M. Wang, R.C. Che, Small 15, 1900900 (2019)

    Google Scholar 

  5. B. Zhao, B.B. Fan, G. Shao, W.Y. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7, 18815–18823 (2015)

    CAS  Google Scholar 

  6. Z.P. Mao, W. Wang, Y. Liu, L.P. Zhang, H. Xu, Y. Zhong, Thin Solid Films 558, 208–214 (2014)

    CAS  Google Scholar 

  7. L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano 6, 5605–5613 (2012)

    CAS  Google Scholar 

  8. J. Kim, K. Han, J.W. Hahn, Sci. Rep. 7, 6740 (2017)

    Google Scholar 

  9. X.F. Liu, Y.K. Lai, J.Y. Huang, S.S. Al Deyab, K.Q. Zhang, J. Mater. Chem. C 3, 345–351 (2015)

    CAS  Google Scholar 

  10. M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Mater. Chem. A 2, 16403–16409 (2014)

    CAS  Google Scholar 

  11. H. Zhang, X.Y. Tian, C.P. Wang, C.P. Wang, H.L. Luo, J. Hu, Y.H. Shen, A.J. Xie, Appl. Surf. Sci. 314, 228–232 (2014)

    CAS  Google Scholar 

  12. C. Hu, G. Xu, X. Shen, J. Alloy Compd. 486, 371–375 (2009)

    CAS  Google Scholar 

  13. C.G. Granqvist, R.A. Buhrman, J. Wyns, A.J. Sievers, Phys. Rev. Lett. 37, 625 (1976)

    CAS  Google Scholar 

  14. T. Hasegawa, S.W. Kim, T. Abe, S. Kumagai, R. Yamanashi, K. Seki, K. Uematsu, K. Toda, M. Sato, Chem. Lett. 45, 1096–1098 (2016)

    CAS  Google Scholar 

  15. H.H. Hou, G.Y. Xu, S.J. Tan, S.S. Xiang, J. Alloy Compd. 763, 736–741 (2018)

    CAS  Google Scholar 

  16. P. Pradhan, R. Chakraborty, J. Chem. Eng. 11, 4–13 (2016)

    CAS  Google Scholar 

  17. H.L. Lv, G.B. Ji, X.G. Li, X.F. Chang, M. Wang, H.Q. Zhang, Y.W. Du, J. Magn. Magn. Mater. 374, 225–229 (2015)

    CAS  Google Scholar 

  18. X.G. Li, G.B. Ji, H.L. Lv, M. Wang, Y.W. Du, J. Magn. Magn. Mater. 355, 65–69 (2014)

    CAS  Google Scholar 

  19. Y.P. Chen, G.Y. Xu, T.C. Guo, N. Zhou, China Technol. Sci. 55, 623–628 (2012)

    CAS  Google Scholar 

  20. X. He, H. Htoon, S.K. Doorn, W.H.P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin, Nat. Mater. 17, 663–670 (2018)

    CAS  Google Scholar 

  21. Y. Ma, Y.J. Ma, D. Bresser, Y. Ji, D. Geiger, U. Kaiser, C. Streb, A. Varzi, S. Passerini, ACS Nano 12, 7220–7231 (2018)

    CAS  Google Scholar 

  22. Y. Cheng, S.Y. Zhao, B. Johannessen, J.-P. Veder, M. Saunders, M.R. Rowles, M. Chen, C. Liu, M.F. Chisholm, R. De Marco, H.M. Cheng, S.Z. Yang, S.P. Jiang, Adv. Mater. 30, 1706287 (2018)

    Google Scholar 

  23. L. Wang, H.L. Xing, Z.F. Zhou, Z.Y. Shen, X. Sun, G.C. Xu, NANO 11, 1650139 (2018)

    Google Scholar 

  24. S.L. Yang, C.Y. Cao, P.P. Huang, P. Li, Y.B. Sun, F. Wei, W.G. Song, J. Mater. Chem. A 3, 8701–8705 (2015)

    CAS  Google Scholar 

  25. F.H. Wang, J.H. Yan, H. Wang, Rare Met. Mater. Eng. 29, 311–314 (2000)

    Google Scholar 

  26. G. Drewelow, A. Reed, C. Stone, K. Roh, Z.-T. Jiang, L.N.T. Truc, K. No, H. Park, S. Lee, Appl. Surf. Sci. 484, 990–998 (2019)

    CAS  Google Scholar 

  27. Y.T. Prabhu, B. Sreedhar, U. Pal, Mater. Today 8, 419–426 (2019)

    CAS  Google Scholar 

  28. H. Guo, Q. Wang, J. Liu, J. Liu, C.Y. Du, B.A. Li, Appl. Surf. Sci. 487, 379–388 (2019)

    CAS  Google Scholar 

  29. L. Lin, H.L. Xing, R.W. Shu, L. Wang, X.L. Ji, D.X. Tan, Y. Gan, RSC Adv. 5, 94539–94550 (2015)

    CAS  Google Scholar 

  30. C.Y. Tang, C.T. Wong, L.N. Zhang, M.T. Choy, T.W. Chow, K.C. Chana, T.M. Yue, Q. Chen, Alloy Compd. 557, 67–72 (2013)

    CAS  Google Scholar 

  31. H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z.F. Liu, Q.Q. Shi, P.S. Xiao, Y. Yang, T.F. Zhang, Y.S. Chen, Carbon 124, 506–514 (2017)

    CAS  Google Scholar 

  32. H. Norazlina, A.A. Hadi, A.U. Qurni, M. Amri, S. Mashelmie, Y. Kamal, Polym. Bull. 76, 1453–1469 (2019)

    CAS  Google Scholar 

  33. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Jin, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65, 124–139 (2013)

    CAS  Google Scholar 

  34. N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9, 2973–2983 (2017)

    CAS  Google Scholar 

  35. A. Ling, J. Ling, G.G. Tan, X.S. Gu, Y.X. Lou, S.W. Chen, Q.K. Man, R.W. Li, X.C. Liu, J. Alloy Compd. 787, 1097–1103 (2019)

    CAS  Google Scholar 

  36. Z.J. Wang, L. Wu, J.G. Zhou, Z.H. Jiang, B.Z. Shen, Nanoscale 6, 12298–12302 (2014)

    CAS  Google Scholar 

  37. H. Hekmatara, M. Seifi, K. Forooraghi, S. Mirzaee, Phys. Chem. Chem. Phys. 16, 24069–24075 (2014)

    CAS  Google Scholar 

  38. D.S. Balsara, R. Käppeli, J. Comput. Phys. 376, 1108–1137 (2019)

    Google Scholar 

  39. Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Chem. Eng. J. 337, 522–531 (2018)

    CAS  Google Scholar 

  40. Q.T. Liu, X.F. Liu, H.B. Feng, H.C. Shui, R.H. Yu, Chem. Eng. J. 314, 320–327 (2017)

    CAS  Google Scholar 

  41. Z.F. Liu, H.L. Xing, L. Wang, D. Tan, Y. Gan, X.L. Ji, G.C. Xu, NANO 11, 1650091 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 51477002 and 51707003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xing, H., Wang, H. et al. Microwave absorbing and infrared radiation properties of Al@multi-walled carbon nanotubes composites. J Mater Sci: Mater Electron 30, 19760–19769 (2019). https://doi.org/10.1007/s10854-019-02342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02342-5

Navigation