Skip to main content
Log in

Effect of Zn substitution on the structure and magnetic properties of Sr0.1La0.45Ca0.45Fe11.7−xZnxCo0.3O19 hexagonal ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

M-type strontium ferrites Sr0.1La0.45Ca0.45Fe11.7−xZnxCo0.3O19 (x = 0, 0.05, 0.1, 0.15 and 0.2) were synthesized by ceramic process. The effects of Zn substitution on phase composition, microstructure, sublattice occupation and magnetic properties of the ferrites were systematically investigated using X-ray diffraction, field emission scanning electron microscopy, 57Fe Mössbauer spectroscopy and magnetic properties test instrument, respectively. The results showed that all the samples were single hexagonal ferrite phase with no observation of other phases, while the lattice constant a did not vary basically and the lattice constant c increased continuously with increase of the Zn substitution amount. Simultaneously, the FESEM micrographs showed that more platelet shaped grains were observed. Mössbauer spectra have revealed that Zn2+ ions occupied both 4f1 and 4f2 sites, but Zn2+ ions would prefer to occupying 4f2 site with increasing Zn substitution. In addition, the remanence (Br) of the sintered ferrites increased firstly and then decreased, while the intrinsic coercivity (Hcj) decreased continuously. The sintered ferrites with the optimal Zn doping level of x = 0.05 exhibited high magnetic properties, including Br= 439.7 mT, Hcj= 371.8 kA/m and (BH)max= 36.88 kJ/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Kools, A. Morel, R. Grössinger, J.M. Le Breton, P. Tenaud, LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects. J. Magn. Magn. Mater. 242–245, 1270–1276 (2002)

    Article  Google Scholar 

  2. M.M. Hessien, M.M. Rashad, M.S. Hassan, K. El-Barawy, Synthesis and magnetic properties of strontium hexaferrite from celestite ore. J. Alloy. Compd. 476, 373–378 (2009)

    Article  CAS  Google Scholar 

  3. T. Koutzarova, S. Kolev, C. Ghelev, I. Nedkov, B. Vertruen, R. Cloots, C. Henrist, A. Zaleski, Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques. J. Alloy. Compd. 579, 174–180 (2013)

    Article  CAS  Google Scholar 

  4. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. 238, 207–214 (2002)

    Article  CAS  Google Scholar 

  5. J.M. Le Breton, D. Seifert, J. Töpfer, L. Lechevallier, A Mössbauer investigation of Sr1-xLaxFe12O19 (0≤x≤1) M-type hexaferrites. Phys. B 470–471, 33–38 (2015)

    Article  Google Scholar 

  6. C. Lei, S. Tang, Y. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. 42(14), 15511–15516 (2016)

    Article  CAS  Google Scholar 

  7. P. Sharma, A. Verma, R.K. Sidhu, O.P. Pandey, Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets. J. Alloy. Compd. 361, 257–264 (2003)

    Article  CAS  Google Scholar 

  8. Z. Wang, Z. Zhou, W. Zhang, H. Qian, M. Jin, Preparation and Magnetic Properties of Nd3+, Al3+, Ca2+ Substituted M-Type Strontium Hexaferrites. J. Supercond. Nov. Magn. 26, 3501–3506 (2013)

    Article  CAS  Google Scholar 

  9. S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route. Mater. Res. Bull. 63, 58–66 (2015)

    Article  CAS  Google Scholar 

  10. Y. Yang, F. Wang, X. Liu, J. Shao, S. Feng, D. Huang, M. Li, The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12-xBixO19 hexagonal ferrites. J. Magn. Magn. Mater. 422, 209–215 (2017)

    Article  CAS  Google Scholar 

  11. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29–35 (2017)

    Article  CAS  Google Scholar 

  12. D.H. Choi, S.W. Lee, I.-B. Shim, C.S. Kim, Mössbauer studies for La–Co substituted strontium ferrite. J. Magn. Magn. Mater. 304, e243–e245 (2006)

    Article  CAS  Google Scholar 

  13. L. Peng, L. Li, R. Wang, Y. Hu, X. Tu, Effect of La–Co substitution on the crystal structure and magneticproperties of hot press sintered Sr1−xLaxFe12−xCoxO19 (x = 0–0.5) ferrites for use in LTCC technology. J. Magn. Magn. Mater. 391, 136–139 (2015)

    Article  CAS  Google Scholar 

  14. Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu, W. Zhong, B.X. Gu, Y.W. Du, The effect of La–Zn substitution on the microstructure and magnetic properties of barium ferrites. Mater. Sci. Eng. A 448, 326–329 (2007)

    Article  Google Scholar 

  15. P. Kumar, A. Gaur, Room temperature magneto-electric coupling in La–Zn doped Ba1−xLaxFe12−xZnxO19 (x = 0.0–0.4) hexaferrite. Appl. Phys. A 123, 732 (2017)

    Article  Google Scholar 

  16. L. Qiao, L. You, J. Zheng, L. Jiang, J. Sheng, The magnetic properties of strontium hexaferrites with La–Cu substitution prepared by SHS method. J. Magn. Magn. Mater. 318, 74–78 (2007)

    Article  CAS  Google Scholar 

  17. Y.-M. Kang, Y.-H. Kwon, M.-H. Kim, D.-Y. Lee, Enhancement of magnetic properties in Mn–Zn substituted M-type Sr-hexaferrites. J. Magn. Magn. Mater. 382, 10–14 (2015)

    Article  CAS  Google Scholar 

  18. Y. Yang, J. Shao, F. Wang, X. Liu, D. Huang, Impacts of MnZn doping on the structural and magnetic properties of M-type SrCaLa hexaferrites. Appl. Phys. A 123(5), 310 (2017)

    Article  Google Scholar 

  19. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63, 1921–1924 (2009)

    Article  CAS  Google Scholar 

  20. Z. Zhang, X. Liu, X. Wang, Y. Wu, R. Li, Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites. J. Alloy. Compd. 525, 114–119 (2012)

    Article  CAS  Google Scholar 

  21. J.M. Le Breton, J. Teillet, G. Wiesinger, A. Morel, F. Kools, P. Tenaud, Mössbauer Investigation of Sr–Fe–O Hexaferrites With La–Co Addition. IEEE Trans. Magn. 38, 2952–2954 (2002)

    Article  Google Scholar 

  22. A. Morel, J.M. Le Breton, J. Kreisel, G. Wiesinger, F. Kools, P. Tenaud, Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy. J. Magn. Magn. Mater. 242–245, 1405–1407 (2002)

    Article  Google Scholar 

  23. G. Wiesinger, M. Müller, R. Grössinger, M. Pieper, A. Morel, F. Kools, P. Tenaud, J.M. Le Breton, J. Kreisel, Substituted ferrites studied by nuclear methods. Phys. Stat. Sol. (a) 189, 499–508 (2002)

    Article  CAS  Google Scholar 

  24. L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel, F. Kools, P. Tenaud, Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys. B 327, 135–139 (2003)

    Article  CAS  Google Scholar 

  25. X. Li, W. Yang, D. Bao, X. Meng, B. Lou, Influence of Ca substitution on the microstructure and magnetic properties of SrLaCo ferrite. J. Magn. Magn. Mater. 329, 1–5 (2013)

    Article  CAS  Google Scholar 

  26. Y. Yang, X. Liu, D. Jin, Y. Ma, Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method. Mater. Res. Bull. 59, 37–41 (2014)

    Article  CAS  Google Scholar 

  27. X. Huang, X. Liu, Y. Yang, K. Huang, X. Niu, D. Jin, S. Gao, Y. Ma, F. Huang, F. Lv, S. Feng, Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites. J. Magn. Magn. Mater. 378, 424–428 (2015)

    Article  CAS  Google Scholar 

  28. Z. Chen, F. Wang, S. Yan, Z. Feng, Microstructure and magnetic properties of M-type Sr0.61−xLa0.39CaxFe11.7Co0.3O19 hexaferrite prepared by microwave calcination. Mater. Sci. Eng. B 182, 69–73 (2014)

    Article  CAS  Google Scholar 

  29. B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloy. Compd. 550, 198–203 (2013)

    Article  CAS  Google Scholar 

  30. S.W. Lee, S.Y. An, I.-B. Shim, C.S. Kim, Mössbauer studies of La–Zn substitution effect in strontium ferrite nanoparticles. J. Magn. Magn. Mater. 290–291, 231–233 (2005)

    Article  Google Scholar 

  31. Y. Du, H. Lu, Y. Zhang, L. Hui, T. Wang, Investigation of magnetic properties and Mössbauer spectra of LaxBa1-xFe12-xZnxO19 ferrites. Acta. Phys. Sin. 32, 168–175 (1983). (In Chinese)

    CAS  Google Scholar 

  32. M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloy. Compd. 585, 465–473 (2014)

    Article  CAS  Google Scholar 

  33. I. Bsoul, S.H. Mahmood, A.-F. Lehlooh, A. Al-Jamel, Structural and magnetic properties of SrFe12−2xTixRuxO19. J. Alloy. Compd. 551, 490–495 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Support Program of Sichuan Province (Grant No. CDWA2016ZC3-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Lian, L., Liu, Y. et al. Effect of Zn substitution on the structure and magnetic properties of Sr0.1La0.45Ca0.45Fe11.7−xZnxCo0.3O19 hexagonal ferrites. J Mater Sci: Mater Electron 30, 19618–19624 (2019). https://doi.org/10.1007/s10854-019-02335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02335-4

Navigation