Skip to main content
Log in

Experimental study on the effect of O2 on the discharge decomposition products of C5-PFK/N2 mixtures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sulfur hexafluoride (SF6), the most widely used insulating medium in power equipment, is a high-greenhouse effect gas. The use of alternative eco-friendly gases as an insulating medium is of great significance to the green development of the power industry. C5 perfluoroketone (1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2butanone; C5-PFK) mixtures have remarkable potential to replace SF6 in medium-voltage (MV) grade electrical equipment. This study constructs an experimental power–frequency breakdown platform to investigate the effect of O2 on the discharge decomposition products of environment-friendly C5-PFK/N2 mixtures and address the problem of generation of solid decomposition products due to insulation breakdown during engineering application. Studies have shown that the solid decomposition products produced by the insulation breakdown of C5-PFK/N2 mixtures mainly include simple C substances, CuF2, CuO, Cu2O, and fluorocarbons. The gas decomposition products mainly include CO, CF4, C2F4, C2F6, C3F6, C3F8, C4F10 and C3F7H. Addition of O2 to C5-PFK/N2 mixtures suppresses the formation of solid and gas decomposition products, such as C2F4, C3F8, and C3F6, but promotes the accumulation of gas decomposition products, such as CO and CF4. The recommended concentration of O2 to add to engineering applications is approximately 4% of the volume fraction; such a concentration can effectively avoid the generation of solid decomposition products due to insulation breakdown, and produce as few toxic decomposition products as possible. Addition of O2 to C5-PFK/N2 mixtures can prevent solid decomposition products from occurring during electrical breakdown of the gas-insulated medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, Y. Li, Z. Cui, D. Chen, X. Zhang, Simulation and experiment on the catalytic degradation of high-concentration SF6 on TiO2 surface under UV light. AIP Adv. 8(5), 55215 (2018)

    Article  Google Scholar 

  2. J. Tang, F. Liu, X. Zhang, Q. Meng, J. Zhou, Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF 6 under four different partial discharges. IEEE Trans. Dielectr. Electr. Insul. 19(1), 29–36 (2012)

    Article  CAS  Google Scholar 

  3. M.P. Sulbaek Andersen, M. Kyte, S.T. Andersen, C.J. Nielsen, O.J. Nielsen, Atmospheric chemistry of (CF3)2CF–CN: a replacement compound for the most potent industrial greenhouse gas, SF6. Environ. Sci. Technol. 51(3), 1321–1329 (2017)

    Article  CAS  Google Scholar 

  4. D. Chen, X. Zhang, J. Tang, Z. Cui, H. Cui, Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. J. Hazard. Mater. 363, 346–357 (2019)

    Article  CAS  Google Scholar 

  5. Y. Li et al., Study on the thermal decomposition characteristics of C4F7N-CO2 mixture as eco-friendly gas insulating medium. High Volt. (2019). https://doi.org/10.1049/hve.2019.0032

    Article  Google Scholar 

  6. Y. Li, X. Zhang, S. Tian, S. Xiao, Y. Li, D. Chen, Insight into the decomposition mechanism of C6F12O-CO2 gas mixture. Chem. Eng. J. 360, 929–940 (2019)

    Article  CAS  Google Scholar 

  7. P.C. Stoller, C.B. Doiron, D. Tehlar, P. Simka, N. Ranjan, Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications. IEEE Trans. Dielectr. Electr. Insul. 24(5), 2712–2721 (2017)

    Article  CAS  Google Scholar 

  8. X. Zhang et al., Dissociative adsorption of environment-friendly insulating medium C3F7CN on Cu (111) and Al (111) surface: a theoretical evaluation. Appl. Surf. Sci. 434, 549–560 (2018)

    Article  CAS  Google Scholar 

  9. X. Li, X. Guo, A.B. Murphy, H. Zhao, J. Wu, Z. Guo, Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas. J. Appl. Phys. 122(14), 143302 (2017)

    Article  Google Scholar 

  10. Y. Kieffel, F. Biquez, P. Ponchon, T. Irwin, SF6 alternative development for high voltage switchgears, in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5

  11. J.D. Mantilla, N. Gariboldi, S. Grob, M. Claessens, Investigation of the insulation performance of a new gas mixture with extremely low GWP, in 2014 IEEE Electrical Insulation Conference (EIC), 2014, pp. 469–473

  12. A. Tatarinov et al., Dielectric barrier discharge processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, their mixtures with air, N2, CO2 and analysis of their decomposition products. Plasma Chem. Plasma Process. 35(5), 845–862 (2015)

    Article  CAS  Google Scholar 

  13. A.V. Tatarinov et al., Comparative study of degradation of trans-1, 3, 3, 3-trifluoropropene, 2, 3, 3, 3-tetrafluoropropene, perfluoro-3-methylbutanone-2, and sulfur hexafluoride in dielectric-barrier discharge. High Energy Chem. 50(1), 64–70 (2016)

    Article  CAS  Google Scholar 

  14. Y. Fu, M. Rong, X. Wang, A. Yang, Rate constants of C5F10O decomposition reactions at temperatures of 300–3500 K. J. Phys. D 52(3), 35202 (2018)

    Article  Google Scholar 

  15. X. Zhang, Y. Li, S. Xiao, J. Tang, S. Tian, Z. Deng, Decomposition mechanism of C5F10O: an environmentally friendly insulation medium. Environ. Sci. Technol. 51(17), 10127–10136 (2017)

    Article  CAS  Google Scholar 

  16. M. Aints, I. Jõgi, M. Laan, P. Paris, J. Raud, Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air. J. Phys. D 51(13), 135205 (2018)

    Article  Google Scholar 

  17. Y. Wu et al., Evaluation of SF6-alternative gas C5-PFK based on arc extinguishing performance and electric strength. J. Phys. D 50(38), 385202 (2017)

    Article  Google Scholar 

  18. X. Zhang et al., Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6. Chem. Eng. J. 336, 38–46 (2018)

    Article  CAS  Google Scholar 

  19. Y. Li et al., Experimental study on compatibility of eco-friendly insulating medium C5F10O/CO2 gas mixture with copper and aluminum. IEEE Access 7, 83994–84002 (2019)

    Article  Google Scholar 

  20. M. Kristoffersen et al., Ring main units with eco-efficient gas mixtures: field experience. CIRED-Open Access Proc. J. 2017(1), 412–415 (2017)

    Article  Google Scholar 

  21. Y. Zhang et al., AC breakdown and decomposition characteristics of environmental friendly gas C5F10O/Air and C5F10O/N2. IEEE Access 7, 73954–73960 (2019)

    Article  Google Scholar 

  22. M. Hikita, S. Ohtsuka, S. Okabe, S. Kaneko, Insulation characteristics of gas mixtures including perfluorocarbon gas. IEEE Trans. Dielectr. Electr. Insul. 15(4), 1015–1022 (2008)

    Article  CAS  Google Scholar 

  23. H. Yan, Y. Fu, X. Wu, X. Xue, C. Li, L. Zhang, Core-shell structured NaTi2(PO4)3@ polyaniline as an efficient electrode material for electrochemical energy storage. Solid State Ionics 336, 95–101 (2019)

    Article  CAS  Google Scholar 

  24. X. Xue, H. Yan, Y. Fu, Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries. Solid State Ionics 335, 1–6 (2019)

    Article  CAS  Google Scholar 

  25. A. Feng, G. Wu, Y. Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)

    Article  CAS  Google Scholar 

  26. M. Muniz-Miranda, F. Muniz-Miranda, S. Caporali, SERS and DFT study of copper surfaces coated with corrosion inhibitor. Beilstein J. Nanotechnol. 5(1), 2489–2497 (2014)

    Article  CAS  Google Scholar 

  27. Y. Li et al., Insight into the compatibility between C6F12O and metal materials: experiment and theory. IEEE Access 6, 58154–58160 (2018)

    Article  Google Scholar 

  28. Y. Wang, Y. Lü, W. Zhan, Z. Xie, Q. Kuang, L. Zheng, Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A 3(24), 12796–12803 (2015)

    Article  CAS  Google Scholar 

  29. Y. Li, X. Zhang, X. Li, Z. Cui, H. Xiao, Detection of ozone and nitric oxide in decomposition products of air-insulated switchgear using ultraviolet differential optical absorption spectroscopy (UV-DOAS). Appl. Spectrosc. 72(8), 1244–1251 (2018)

    Article  CAS  Google Scholar 

  30. J. Zeng, J. Zhuang, T. He, Q. Chen, Y. Liu, Microstructure and dielectric response of Mg doped Cu3Ti2Ta2O12 ceramics. J. Mater. Sci.: Mater. Electron. 30(3), 2652–2658 (2019)

    CAS  Google Scholar 

  31. W. Wu, C. Yu, J. Chen, Q. Yang, Fluorometric detection of copper ions using click chemistry and the target-induced conjunction of split DNAzyme fragments. Int. J. Environ. Anal. Chem. (2019). https://doi.org/10.1080/03067319.2019.1636977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, X., Wang, Y. et al. Experimental study on the effect of O2 on the discharge decomposition products of C5-PFK/N2 mixtures. J Mater Sci: Mater Electron 30, 19353–19361 (2019). https://doi.org/10.1007/s10854-019-02297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02297-7

Navigation