Skip to main content
Log in

Conductive graphene/polydimethylsiloxane nanocomposites for flexible strain sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexibility electrode with high stretchability, electrical conductivity, and good mechanical properties are desirable, owing to their promising applications in electronic circuit and human motion monitoring systems. In order to prepare a conductive composite material, the graphene (GE) was used as a conductive filler and polydimethylsiloxane (PDMS) as a polymeric matrix. Graphene has high electrical conductivity, which can be hybrided to PDMS to form graphene/polydimethylsiloxane (GE/PDMS) conductive film using a simple spin-coating method. The electrical resistivity of the GE/PDMS film was further decreased to 9.4 Ω cm at a graphene loading of 25 wt%. The GE/PDMS films show excellent stability and were used as a sandwich structured PDMS-GE/PDMS–PDMS flexible strain sensor. The graphene strain sensor has been studied with small size and high sensitivity. Choosing a weak human motion (fingers bending) to test significant resistance changes and the small-scale sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.C. Zhang, H. Wang, Y. Zhao, F. Li, X.M. Ou, B.Q. Sun, X.H. Zhang, Nanoscale 8(4), 2123–2128 (2016)

    Article  CAS  Google Scholar 

  2. J. Gao, C. Liu, L. Miao, X.Y. Wang, Y. Peng, Y. Chen, J. Electron. Mater. 46(5), 3049–3056 (2017)

    Article  CAS  Google Scholar 

  3. Y. Zhu, Y. Hu, P. Zhu, T. Zhao, X. Liang, R. Sun, C. Wong, New J. Chem. 41, 4950–4958 (2017)

    Article  CAS  Google Scholar 

  4. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Sens. Actuators B 255, 1869–1877 (2018)

    Article  CAS  Google Scholar 

  5. M.B. Azizkhani, J. Kadkhodapour, S. Rastgordani, A.P. Anaraki, B.S. Hadavand, Fiber. Polym. 20(1), 35–44 (2019)

    Article  CAS  Google Scholar 

  6. W. Li, F. Xu, W. Liu, Y. Gao, K. Zhang, X. Zhang, Y. Qiu, Compos. Part A 108, 107–113 (2018)

    Article  CAS  Google Scholar 

  7. S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang, A.P. Mouritz, A.J. Kinloch, C.H. Wang, A.C.S. Appl, Mater. Int. 8(37), 24853–24861 (2016)

    Article  CAS  Google Scholar 

  8. L. Wang, C. Xu, Y. Li, Sens. Actuators A 189(15), 45–54 (2013)

    Article  CAS  Google Scholar 

  9. T. Giffney, E. Bejanin, A.S. Kurian, J. Travas-Sejdic, K. Aw, Sens. Actuators A 259(1), 44–49 (2017)

    Article  CAS  Google Scholar 

  10. Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim, J.H. Cho, Adv. Mater. 27(22), 3411–3417 (2015)

    Article  CAS  Google Scholar 

  11. A. Bouhamed, A. Al-Hamry, C. Müller, S. Choura, O. Kanoun, Compos. Part. B 128(1), 91–99 (2017)

    Article  CAS  Google Scholar 

  12. W. Li, W. Feng, H. Huang, J. Mater. Sci. 27, 6364–6370 (2016)

    CAS  Google Scholar 

  13. H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8, 12977–12989 (2016)

    Article  CAS  Google Scholar 

  14. S. Khan, L. Lorenzelli, R.S. Dahiya, IEEE Sens. J. 15(6), 3164–3185 (2015)

    Article  Google Scholar 

  15. L. Liu, J. Wu, Y. Zhou, Compos. Part A 89, 10–17 (2016)

    Article  CAS  Google Scholar 

  16. Y. Li, X. Jiang, Z. Liu, Z. Liu, Z. Liu, Nano Res. 3(8), 545–556 (2010)

    Article  CAS  Google Scholar 

  17. X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, H. Zhu, Sci. Rep. 2, 395–403 (2012)

    Article  CAS  Google Scholar 

  18. D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, J. Electron. Mater. 47(4), 2263–2270 (2018)

    Article  CAS  Google Scholar 

  19. D. Zhang, J. Tong, B. Xia, Sens. Actuators B 197, 66–72 (2014)

    Article  CAS  Google Scholar 

  20. G. Xue, B. Zhang, M. Sun, X. Zhang, J. Li, L. Wang, C. Song, Int. J. Adhes. Adhes. 88, 11–18 (2019)

    Article  CAS  Google Scholar 

  21. G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, J. Mater. Sci.: Mater. Electron. 28, 576 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Fund for the Nanjing Social Science and Technology Development Foundation (201805009), Jiangsu Provincial Natural Science Foundation for Youths (Grant No. BK20170118) and Gen guest project of Jinling Institute of Technology (2017007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.M., Yang, X.L. & Wang, K.Y. Conductive graphene/polydimethylsiloxane nanocomposites for flexible strain sensors. J Mater Sci: Mater Electron 30, 19319–19324 (2019). https://doi.org/10.1007/s10854-019-02292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02292-y

Navigation