Skip to main content
Log in

Dependence of plasma power for direct synthesis of nitrogen-doped graphene films on glass by plasma-assisted hot filament chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal-free synthesis of nitrogen-doped (N-doped) graphene films on glass is important for modulating the properties of graphene glass but has so far met with limited success. In this study, direct synthesis of N-doped graphene films on glass with eco-friendly N2 dopant through a novel plasma-assisted hot filament chemical vapor deposition (HFCVD) approach was reported. Influence of plasma power on the structural and electrical properties of N-doped graphene films was investigated. The filament and plasma source were found to be both crucial for depositing high-quality N-doped graphene films with N2 dopant. With a small N2 flow of 5 sccm, the N content of graphene films synthesized by plasma-assisted HFCVD could be modulated from 0.6 to 3.0 at.% through adjusting the plasma power from 0 to 130 W. A lowest resistivity of 4.68 × 10−3 Ω cm was obtained at 130 W. Temperature-dependence of resistance measurement revealed that the carrier mobility of N-doped graphene films decreased by raising the plasma power, which was attributed to the increase of conductive activation energy. This work provides an alternative method for direct, controllable and green preparation of N-doped graphene films on glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Ma, Q. Liao, H. Sun, S. Lei, Y. Zheng, R. Yin, A. Zhao, Q. Li, B. Wang, Nano Lett. 18, 386–394 (2017)

    Article  Google Scholar 

  2. S. Yoo, S.Y. Jeong, J.W. Lee, J.H. Park, D.W. Kim, H.J. Jeong, J.T. Han, G.W. Lee, S.Y. Jeong, Carbon 144, 675–683 (2019)

    Article  CAS  Google Scholar 

  3. X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 43, 7067–7098 (2014)

    Article  CAS  Google Scholar 

  4. M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Carbon 132, 104–140 (2018)

    Article  CAS  Google Scholar 

  5. H. Xu, L. Ma, Z. Jin, J. Energy Chem. 27, 146–160 (2018)

    Article  Google Scholar 

  6. Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Adv. Mater. 31, 1803639 (2019)

    Article  Google Scholar 

  7. P. Dharmaraj, P.S. Venkatesh, P. Kumar, K. Asokan, K. Jeganathan, RSC Adv. 6, 101347–101352 (2016)

    Article  CAS  Google Scholar 

  8. S. Zheng, G. Zhong, X. Wu, L. D’Arsiè, J. Robertson, RSC Adv. 7, 33185–33193 (2017)

    Article  CAS  Google Scholar 

  9. J. Sun, Y. Chen, M.K. Priydarshi, T. Gao, X. Song, Y. Zhang, Z. Liu, Adv. Mater. 28, 10333–10339 (2016)

    Article  CAS  Google Scholar 

  10. J. Sun, Z. Chen, L. Yuan, Y. Chen, J. Ning, S. Liu, D. Ma, X. Song, M.K. Priydarshi, A. Bachmatiuk, M.H. Rümmeli, T. Ma, L. Zhi, L. Huang, Y. Zhang, Z. Liu, ACS Nano 10, 11136–11144 (2016)

    Article  CAS  Google Scholar 

  11. X.D. Chen, Z. Chen, W.S. Jiang, C. Zhang, J. Sun, H. Wang, W. Xin, L. Lin, M.K. Priydarshi, H. Yang, Z.B. Liu, J.G. Tian, Y. Zhang, Z. Liu, Adv. Mater. 29, 1603428 (2017)

    Article  Google Scholar 

  12. Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao, T. Li, Z. Dou, H. Ci, J. Sun, Z. Chen, R. Wang, L. Cui, X. Chen, K. Chen, H. Wang, S. Wang, P. Gao, M.H. Rümmeli, H. Peng, Y. Zhang, Z. Liu, Adv. Mater. 30, 1704839 (2018)

    Article  Google Scholar 

  13. R. Muñoz, C. Munuera, J.I. Martínez, C. Gómez-Aleixandre, M. García-Hernández, 2D Mater. 4, 015009 (2016)

    Article  Google Scholar 

  14. Z. Zhai, H. Shen, J. Chen, X. Li, Y. Jiang, ACS Appl. Mater. Interfaces 10, 17427–17436 (2018)

    Article  CAS  Google Scholar 

  15. L. Cui, X. Chen, B. Liu, K. Chen, Z. Chen, Y. Qi, H. Xie, F. Zhou, M.H. Rümmeli, Y. Zhang, Z. Liu, ACS Appl. Mater. Interfaces 10, 32622–32630 (2018)

    Article  CAS  Google Scholar 

  16. N. Wei, Q. Li, S. Cong, H. Ci, Y. Song, Q. Yang, C. Lu, C. Li, G. Zou, J. Sun, Z. Liu, J. Mater. Chem. A 7, 4813–4822 (2019)

    Article  CAS  Google Scholar 

  17. Z. Zhai, H. Shen, J. Chen, X. Li, Y. Jiang, J. Mater. Chem. A 7, 12038–12049 (2019)

    Article  CAS  Google Scholar 

  18. T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, J. Shen, New J. Chem. 36, 1385–1391 (2012)

    Article  CAS  Google Scholar 

  19. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3, 210–215 (2008)

    Article  CAS  Google Scholar 

  20. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235–246 (2013)

    Article  CAS  Google Scholar 

  21. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726–4730 (2009)

    CAS  Google Scholar 

  22. Z. Zhai, H. Shen, J. Chen, J. Li, S. Zhang, RSC Adv. 6, 42353–42360 (2016)

    Article  CAS  Google Scholar 

  23. Z. Zhai, H. Shen, J. Chen, Y. Jiang, Q. Tang, Carbon 117, 322–330 (2017)

    Article  CAS  Google Scholar 

  24. W.J. Lee, J. Kim, S.O. Kim, Small Methods 1, 1600014 (2017)

    Article  Google Scholar 

  25. S. Ramakrishna, R.O. Dusane, Mater. Chem. Phys. 213, 177–182 (2018)

    Article  CAS  Google Scholar 

  26. W.J. McCarter, G. Starrs, T.M. Chrisp, P.F.G. Banfill, J. Mater. Sci. 42, 2200–2203 (2007)

    Article  CAS  Google Scholar 

  27. K. Takahashi, H.T. Hahn, J. Compos. Mater. 45, 2603–2611 (2011)

    Article  CAS  Google Scholar 

  28. R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Carroll, Nano Lett. 1, 457–460 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Nature Science Foundation of China (61774084, 51702159), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ17-08), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0251), NSF of Jiangsu province (BK20170791), National and Jiangsu Postdoctoral Research Funds (2017M610328, 2018T110494, 1701141B), and Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion (MTEC-2018M02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglie Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Z., Shen, H., Chen, J. et al. Dependence of plasma power for direct synthesis of nitrogen-doped graphene films on glass by plasma-assisted hot filament chemical vapor deposition. J Mater Sci: Mater Electron 30, 18811–18817 (2019). https://doi.org/10.1007/s10854-019-02236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02236-6

Navigation