Skip to main content
Log in

Microscale pattern etch of 4H–SiC by inductively coupled plasma

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SiC is commonly used in the field of high temperature, high frequency, high power and radiation-resistant semiconductor devices and ultraviolet photodetectors due to its excellent photoelectric characteristics. Plasma etching is one of the key processes in the fabrication of SiC devices. However, it is difficult to obtain a smooth and vertical etch profile due to the subtrench effect when the conventional inductively coupled plasma (ICP) is used to etch SiC with small-size patterns (such as 1 μm holes or trenches), thus affecting the subsequent process and device performance. To study microscale pattern etch of 4H–SiC, we used different mask and etch gas systems for ICP etching. The etch profile was characterized using SEM. When the chlorine gas was used, there was no subtrench but a very inclined angle between the SiC bottom and sidewalls, which is hard to improve. When we used photoresist (PR) mask–HBr system, sidewall deposition happened. SiO2 mask–HBr/Ar system could help to etch different angles but has a limitation angle of up to 80°. Compared to above systems, the etching profile was much more vertical when HBr/SF6/O2 was used. After many rounds of process debugging, we obtain a good etching profile with flat and vertical sidewalls, no subtrench in the bottom and no damage of the SiO2 mask. Our work shows a good way of microscale pattern SiC etching by ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.Y. Chung, C.C. Tin, J.R. Williams et al., IEEE Electron. Device Lett. 22, 176 (2001)

    Article  CAS  Google Scholar 

  2. B. Chen, J. Chen, T. Sekiguchi et al., J. Mater. Sci. 19, 219 (2008)

    CAS  Google Scholar 

  3. N. Nakamura, K. Furuta, X.Q. Shen, T. Kitamura, K. Nakamura, H. Okumura, J. Cryst. Growth 301, 452 (2007)

    Article  Google Scholar 

  4. S.J. Cho, C. Wang, N.Y. Kim. Microwave Integrated Circuits Conference (2013)

  5. D. Tournier, P. Godignon, J. Montserrat et al., IEEE Trans. Ind. Appl. 39, 1508 (2007)

    Article  Google Scholar 

  6. Y. Ueda, T. Nakata, K. Koga et al., MRS Proc. 162, 427 (1989)

    Article  Google Scholar 

  7. W. Cunningham, M. Cooke, J. Melone et al., Mater. Sci. Forum 457–460, 1093–1096 (2004)

    Article  Google Scholar 

  8. D. Zhuang, J.H. Edgar, Mater. Sci. Eng. R 48, 1 (2005)

    Article  Google Scholar 

  9. S. Suhard, I. Simms, I. Brown et al., Solid State Phenom. 195, 150 (2013)

    Article  Google Scholar 

  10. S.J. Pearton, J.W. Lee, J.M. Grow, M. Bhaskaran, F. Ren, Appl. Phys. Lett. 68, 2987 (1996)

    Article  CAS  Google Scholar 

  11. G. McDaniel, J. Vac. Sci. Technol. 15, 885 (1997)

    Article  CAS  Google Scholar 

  12. P. Leerungnawarat, H. Cho, S.J. Pearton, C.-M. Zetterling, M. Ostling, J. Electron. Mater. 29, 342 (2000)

    Article  CAS  Google Scholar 

  13. L. Jiang, N.O.V. Plank, R. Cheung, R. Brown, A. Mount, Microelectron. Eng. 67, 369 (2003)

    Article  Google Scholar 

  14. L. Jiang, N.O.V. Plank, M.A. Blauw, R. Cheung, E.V.D. Drift, J. Phys. D 37, 1809 (2004)

    Article  CAS  Google Scholar 

  15. A. Kathalingam, M.-R. Kim, Y.-S. Chae, S. Sudhakar, T. Mahalingam, J.-K. Rhee, Appl. Surf. Sci. 257, 3850 (2011)

    Article  CAS  Google Scholar 

  16. E. Takahashi, Y. Nishigami, A. Tomyo et al., Jpn. J. Appl. Phys. 46, 1280 (2014)

    Article  Google Scholar 

  17. W.K. Choi, J. Shi, E.F. Chor, J. Vac. Sci. Technol. B 21, 1415 (2003)

    Article  CAS  Google Scholar 

  18. R. Ding, Res. Prog. Solid State Electron. 29, 343 (2009)

    CAS  Google Scholar 

  19. L. Jiang, R. Cheung, Microelectron. Eng. 73, 306 (2004)

    Article  Google Scholar 

  20. T. Qiang, C. Wang, M.Q. Liu, K.K. Adhikari, Z. Yao, Sens. Actuators B 258, 704 (2018)

    Article  CAS  Google Scholar 

  21. A. Albanese, K.M. Tsoi, W.C.W. Chan, J. Lab. Autom. 18, 99 (2013)

    Article  CAS  Google Scholar 

  22. H.K. Chang, Y.J. Bo, J.C. Lee, J. Korean Phys. Soc. 57, 1029 (2010)

    Article  Google Scholar 

  23. H. Ashraf, J.K. Bhardwaj, E. Guibarra et al., MRS Proc. 605, 299 (1999)

    Article  Google Scholar 

  24. K.M. Dowling, E.H. Ransom, D.G. Senesky, J. Microelectromech. Syst. 26, 100 (2017)

    Article  Google Scholar 

  25. D. Ruixue, Y. Yintang, H. Ru, J. Semicond. 30, 100 (2009)

    Google Scholar 

  26. W.F. Yang, Q. Zhang, M. Wang, Y. Xia, Sci. China Technol. Sci. 54, 2232 (2011)

    Article  CAS  Google Scholar 

  27. J.H. Min, G.R. Lee, J.K. Lee, H.M. Sang, C.K. Kim, J. Vac. Sci. Technol. 23, 425 (2005)

    Article  CAS  Google Scholar 

  28. Y. Mourzina, A. Steffen, A. Offenhäusser, Microsyst. Technol. 11, 135 (2005)

    Article  CAS  Google Scholar 

  29. S.W. Pang, J. Vac. Sci. Technol. B 6, 249 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Foreign Experts Bureau High-end Foreign Experts Project (Grant No. G20190114003), the Key Research and Development Program of Jiangsu Province (Grant No. BE2018063), the Natural Science Research Projects of Colleges and Universities in Jiangsu Province (Grant No. 19KJD140002) and the Scientific Research Program for Doctoral Teachers of JSNU (Grant No. 9212218113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, S., Tang, J., Gu, Z. et al. Microscale pattern etch of 4H–SiC by inductively coupled plasma. J Mater Sci: Mater Electron 30, 18788–18793 (2019). https://doi.org/10.1007/s10854-019-02232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02232-w

Navigation