Skip to main content

Advertisement

Log in

An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In current article authors aim is to present an insight on structural, opto-nonlinear-limiting properties of Cadmium sulfide (CdS) thin films affected by various concentrations of tellurium (Te) doping. Hence, the thin films of pure and Te:CdS were fabricated by spray pyrolysis technique by keeping the substrate at 300 °C. X-ray diffraction and FT-Raman spectroscopy analyses confirmed the hexagonal phase of CdS. The values of Lave, ρave and εave are found in range of 18–20 nm, 2.6–3 nm−2 and 1.7–1.9, respectively. Furthermore, the energy dispersive X-ray spectroscopy/scanning electron microscopy mapping (SEM) confirmed the presence and homogeneous doping of Te in CdS. SEM study shows that the fabricated films are free from any pin holes and possess very fine nanostructures. The optical transparency of grown films was noticed ~ 70%, which is quite impressive for colored materials. The absorption index, refractive index values are found in range of 0.04 to 0.25, 1.25 to 3.2 in 200 to 2500 nm wavelength region. The direct energy gap of CdS was noticed to be reduced from 2.44 to 2.35 eV (ΔEg = 0.09) with Te doping content. Photoluminescence emission spectra contains an intense green emission band at ~ 528 ± 4 nm. The dielectric constant and optical conductivity were noticed in range of 1.5 to 10 and 0.02 to 0.6 (× 105), respectively. The values of third order susceptibility and nonlinear refractive index was found of the order of 10−10 esu. The output power of the 532 nm laser passed from films is found to be reducing with increasing the Te content in CdS films. Hence, the deposited films of Te:CdS will be more applicable as optical limiter in sensor device protection from intense lights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Göde, S. Ünlü, Synthesis and characterization of CdS window layers for PbS thin film solar cells. Mater. Sci. Semicond. Process. 90, 92–100 (2019)

    Google Scholar 

  2. F. Khodam, A.R. Amani-Ghadim, S. Aber, Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Sol. Energy 181, 325–332 (2019)

    CAS  Google Scholar 

  3. K. Ravichandran, P. Philominathan, Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Sol. Energy 82, 1062–1066 (2008)

    CAS  Google Scholar 

  4. C.R. Kagan, P. Andry (eds.), Thin-film transistors (CRC Press (Marcel and Dekker Inc.), New York, 2003). ISBN 0-203-91177-6

    Google Scholar 

  5. J. Jie, W. Zhang, Y. Jiang, X. Meng, Y. Li, S. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006)

    CAS  Google Scholar 

  6. J. Hernández-Borja, Y. Vorobiev, R. Ramírez-Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells 95, 1882–1888 (2011)

    Google Scholar 

  7. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, B. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016)

    CAS  Google Scholar 

  8. Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, M.L. Tian, White electroluminescence from a prototypical light-emitting diode based on CdS/Si heterojunctions. Mater. Lett. 196, 8–11 (2017)

    CAS  Google Scholar 

  9. B.-G. An, Y.W. Chang, H.-R. Kim, G. Lee, M.-J. Kang, J.-K. Park, J.-C. Pyun, Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuators B 221, 884–890 (2015)

    CAS  Google Scholar 

  10. Y. Zhao, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Cao, H. Li, L. Wu, Size controllable preparation of sphere-based monolayer CdS thin films for white-light photodetectors. Ceram. Int. 44, 2407–2412 (2018)

    CAS  Google Scholar 

  11. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    CAS  Google Scholar 

  12. D.-H. Kim, N. Lu, R. Ghaffari, J.A. Rogers, Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater. 4, e15 (2012)

    Google Scholar 

  13. X. Hu, G. Li, J.C. Yu, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031–3039 (2009)

    Google Scholar 

  14. C.M. Lieber, Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 486–491 (2003)

    CAS  Google Scholar 

  15. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater Sci. 54, 1–67 (2009)

    CAS  Google Scholar 

  16. Y.-P. Sun, R. Guduru, F. Lin, T. Whiteside, Preparation of nanoscale semiconductors through the rapid expansion of supercritical solution (RESS) into liquid solution. Ind. Eng. Chem. Res. 39, 4663–4669 (2000)

    CAS  Google Scholar 

  17. P. Ball, L. Garwin, Science at the atomic scale. Nature 355, 761–766 (1992)

    Google Scholar 

  18. S.B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, V. Gapontsev, Progress in mid-IR Cr 2 + and Fe 2 + doped II-VI materials and lasers. Opt. Mater. Express 1, 898–910 (2011)

    Google Scholar 

  19. H. Haug, Optical nonlinearities and instabilities in semiconductors (Academic Press Inc., San Diego, 2012)

    Google Scholar 

  20. C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30 (2012)

    CAS  Google Scholar 

  21. J. Jie, W. Zhang, I. Bello, C.-S. Lee, S.-T. Lee, One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications. Nano today 5, 313–336 (2010)

    CAS  Google Scholar 

  22. J.P. Enrı́quez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Solar Cells 76, 313–322 (2003)

    Google Scholar 

  23. A. Cortes, H. Gómez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 82, 21–34 (2004)

    CAS  Google Scholar 

  24. A.E. Rakhshani, A.S. Al-Azab, Characterization of CdS films prepared by chemical-bath deposition. J. Phys. 12, 8745 (2000)

    CAS  Google Scholar 

  25. D.-S. Chuu, C.-M. Dai, Quantum size effects in CdS thin films. Phys. Rev. B 45, 11805 (1992)

    CAS  Google Scholar 

  26. E. Çetinörgü, C. Gümüş, R. Esen, Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films. Thin Solid Films 515, 1688–1693 (2006)

    Google Scholar 

  27. C. Guillén, M. Martınez, J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films 335, 37–42 (1998)

    Google Scholar 

  28. Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: an effect of thickness. J. Electron. Mater. 47, 5386–5395 (2018)

    CAS  Google Scholar 

  29. D. Boosagulla, S. Mandati, R. Allikayala, B.V. Sarada, Room temperature pulse electrodeposition of CdS thin films for application in solar cells and photoelectrochemical cells. ECS J. Solid State Sci. Technol. 7, P440–P446 (2018)

    CAS  Google Scholar 

  30. B. Altiokka, A.K. Yildirim, Electrodeposition of CdS thin films at various pH values. J. Korean Phys. Soc. 72, 687–691 (2018)

    CAS  Google Scholar 

  31. S. Yılmaz, İ. Polat, M. Tomakin, T. Küçükömeroğlu, S. Töreli, E. Bacaksız, Sm-doped CdS thin films prepared by spray pyrolysis: a structural, optical, and electrical examination. Appl. Phys. A 124, 502 (2018)

    Google Scholar 

  32. G. Balaji, R. Balasundaraprabhu, S. Prasanna, N. Prabavathy, M. Venkatraman, V. Asokan, N. Muthukumarasamy, M. Kannan, K. Sivakumaran, Investigations on Hot-wall deposited cadmium sulphide buffer layer for thin film solar cell. Mater. Lett. 222, 82–87 (2018)

    CAS  Google Scholar 

  33. S. Yılmaz, İ. Polat, M. Tomakin, S. Töreli, T. Küçükömeroğlu, E. Bacaksız, Optical and electrical optimization of dysprosium-doped CdS thin films. J. Mater. Sci. 29, 14774–14782 (2018)

    Google Scholar 

  34. S. Yılmaz, The investigation of spray pyrolysis grown CdS thin films doped with flourine atoms. Appl. Surf. Sci. 357, 873–879 (2015)

    Google Scholar 

  35. S. Aksu, E. Bacaksiz, M. Parlak, S. Yılmaz, I. Polat, M. Altunbaş, M. Türksoy, R. Topkaya, K. Özdoğan, Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation. Mater. Chem. Phys. 130, 340–345 (2011)

    CAS  Google Scholar 

  36. S. Butt, N.A. Shah, A. Nazir, Z. Ali, A. Maqsood, Influence of film thickness and In-doping on physical properties of CdS thin films. J. Alloys Compd. 587, 582–587 (2014)

    CAS  Google Scholar 

  37. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J. Alloys Compd. 557, 53–59 (2013)

    CAS  Google Scholar 

  38. A. Podestà, N. Armani, G. Salviati, N. Romeo, A. Bosio, M. Prato, Influence of the fluorine doping on the optical properties of CdS thin films for photovoltaic applications. Thin Solid Films 511–512, 448–452 (2006)

    Google Scholar 

  39. N. Saxena, P. Kumar, V. Gupta, Target swapping in PLD: an efficient approach for CdS/SiO 2 and CdS: Ag (1%)/SiO 2 nanocomposite thin films with enhanced luminescent properties. J. Lumin. 186, 62–67 (2017)

    CAS  Google Scholar 

  40. S.R. Rosario, I. Kulandaisamy, A.M.S. Arulanantham, K. Deva Arun Kumar, S. Valanarasu, M. Shkir, A. Kathalingam, S. AlFaify, Fabrication and characterization of lead sulfide (PbS) thin film based heterostructure (FTO/CdS/PbS/Ag) solar cell by nebulizer spray method. Mater. Res. Express 6, 056416 (2019)

    CAS  Google Scholar 

  41. S. SanthoshKumarJacob, I. Kulandaisamy, S. Valanarasu, A.M.S. Arulanantham, M. Shkir, A. Kathalingam, N. Soundaram, Improving the conductivity of cuprous oxide thin film by doping calcium via feasible nebulizer spray technique for solar cell (FTO/ZnO/Ca-Cu2O). Mater. Res. Express 6, 046405 (2019)

    Google Scholar 

  42. A. Arulanantham, S. Valanarasu, A. Kathalingam, M. Shkir, H.-S. Kim, An investigation on SnS layers for solar cells fabrication with CdS, SnS 2 and ZnO window layers prepared by nebulizer spray method. Appl. Phys. A 124, 776 (2018)

    Google Scholar 

  43. R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumar, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique. Mater. Sci. Semicond. Process. 74, 129–135 (2018)

    CAS  Google Scholar 

  44. Y.Y. Ma, R.H. Bube, Properties of CdS films prepared by spray pyrolysis. J. Electrochem. Soc. 124, 1430–1435 (1977)

    CAS  Google Scholar 

  45. J. Hiie, T. Dedova, V. Valdna, K. Muska, Comparative study of nano-structured CdS thin films prepared by CBD and spray pyrolysis: annealing effect. Thin Solid Films 511, 443–447 (2006)

    Google Scholar 

  46. K.M. Saleh, Study influence of substrate temperature on optical properties of CdS thin films prepared by chemical spray pyrolysis. Ibn AL-Haitham J. Pure Appl. Sci. 32, 7–16 (2019)

    Google Scholar 

  47. R. Panda, V. Rathore, M. Rathore, V. Shelke, D. Jain, P. Gupta, V. Ganesan, Structural and photo-conducting properties of Cd1-xAlxS thin films prepared by spray pyrolysis. AIP Conference Proceedings, vol. 2100 (AIP Publishing, New York), p. 020186

  48. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Appl. Phys. A 125, 281 (2019)

    Google Scholar 

  49. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, M. Gandouzi, Structural, linear and third order nonlinear optical properties of sol-gel grown Ag-CdS nanocrystalline thin films. J. Electron. Mater. 48(2), 1122–1132 (2019)

    CAS  Google Scholar 

  50. R. Panda, V. Rathore, M. Rathore, V. Shelke, N. Badera, L.S. Chandra, D. Jain, M. Gangrade, T. Shripati, V. Ganesan, Carrier recombination in Cu doped CdS thin films: photocurrent and optical studies. Appl. Surf. Sci. 258, 5086–5093 (2012)

    CAS  Google Scholar 

  51. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Mater. Res. Technol, 8, 2021–2030 (2019)

    CAS  Google Scholar 

  52. K. Karthik, S. Pushpa, M. Madhukara Naik, M. Vinuth, Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater. Res. Innov. (2019). https://doi.org/10.1080/14328917.2019.1597436

    Article  Google Scholar 

  53. S. Yılmaz, İ. Polat, M. Tomakin, E. Bacaksız, A research on growth and characterization of CdS: Eu thin films. Appl. Phys. A 125, 67 (2019)

    Google Scholar 

  54. S. Yılmaz, İ. Polat, M. Tomakin, E. Bacaksız, Determination of optimum Er-doping level to get high transparent and low resistive Cd 1–x Er x S thin films. J. Mater. Sci. 30, 5662–5669 (2019)

    Google Scholar 

  55. N. Badera, B. Godbole, S. Srivastava, P. Vishwakarma, L.S. Chandra, D. Jain, M. Gangrade, T. Shripathi, V. Sathe, Ganesan, Quenching of photoconductivity in Fe doped CdS thin films prepared by spray pyrolysis technique. Appl. Surf. Sci. 254, 7042–7048 (2008)

    CAS  Google Scholar 

  56. Z. Wei, Y. Wang, L. Ma, X.S. Wu, Structural and optical properties of Te doped CdS films. Physica B 525, 98–103 (2017)

    CAS  Google Scholar 

  57. R. Banerjee, S. Ray, A.K. Barua, Properties of tellurium doped vacuum evaporated CdS thin films. Jpn. J. Appl. Phys. 21, L43–L45 (1982)

    CAS  Google Scholar 

  58. B. Lokhande, P. Patil, M. Uplane, Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Physica B 302, 59–63 (2001)

    Google Scholar 

  59. S. Sebastian, I. Kulandaisamy, A. Arulanantham, S. Valanarasu, A. Kathalingam, M. Shkir, S. AlFaify, Enhancement in photovoltaic properties of Nd: SnS films prepared by low-cost NSP method. Rare Metals (2019). https://doi.org/10.1007/s12598-019-01295-2

    Article  Google Scholar 

  60. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, S. AlFaify, Effect of Gd doping on structural, optical properties, photoluminescence and electrical characteristics of CdS nanoparticles for optoelectronics. Ceram. Int. 45, 10133–10141 (2019)

    CAS  Google Scholar 

  61. K. Murakoshi, H. Hosokawa, M. Saitoh, Y. Wada, T. Sakata, H. Mori, M. Satoh, S. Yanagida, Preparation of size-controlled hexagonal CdS nanocrystallites and the characteristics of their surface structures. J. Chem. Soc. Faraday Trans. 94, 579–586 (1998)

    CAS  Google Scholar 

  62. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019)

    CAS  Google Scholar 

  63. M. Shkir, M.T. Khan, S. AlFaify, Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-00983-w

    Article  Google Scholar 

  64. M.T. Khan, M. Shkir, A. Almohammedi, S. AlFaify, Fabrication and characterization of La doped PbI2 nanostructured thin films for opto-electronic applications. Solid State Sci. 90, 95–101 (2019)

    CAS  Google Scholar 

  65. M. Shkir, M. TaukeerKhan, V. Ganesh, I.S. Yahia, B. Ul Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609–618 (2018)

    CAS  Google Scholar 

  66. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, A. Singh, Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539–547 (2019)

    CAS  Google Scholar 

  67. R. Kostić, N. Romčević, Raman spectroscopy of CdS nanoparticles. Phys. Status Solidi C 1(11), 2646–2649 (2004)

    Google Scholar 

  68. R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088 (1983)

    CAS  Google Scholar 

  69. C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, Studies of grain size effects in rf sputtered CdS thin films. J. Appl. Phys. 79, 9105–9109 (1996)

    CAS  Google Scholar 

  70. K. Sooklal, L.H. Hanus, H.J. Ploehn, C.J. Murphy, A blue-emitting CdS/dendrimer nanocomposite. Adv. Mater. 10, 1083–1087 (1998)

    CAS  Google Scholar 

  71. M. Munirah, Spectroscopic studies of solegel grown CdS nanocrystalline thin films for optoelec-tronic devices. Mater. Sci. Semicond. Process. 16, 1894–1898 (2013)

    CAS  Google Scholar 

  72. M. Shkir, S. AlFaify, Effect of Gd3 + doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. (2019). https://doi.org/10.1557/jmr.2019.121

    Article  Google Scholar 

  73. S. AlFaify, M. Shkir, A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417–423 (2019)

    CAS  Google Scholar 

  74. S. Alfaify, M. Shkir, A one pot room temperature synthesis of pure and Zn doped PbI2 nanostructures and their structural, morphological, optical, dielectric and radiation studies. J. Nanoelectron. Optoelectron. 14, 255–260 (2019)

    Google Scholar 

  75. O. Zelaya-Angel, L. Hernandez, O. de Melo, J.J. Alvarado-Gil, R. Lozada-Morales, C. Falcony, H. Vargas, R. Ramirez-Bon, Band-gap shift in CdS: phase transition from cubic to hexagonal on thermal annealing. Vacuum 46, 1083–1085 (1995)

    CAS  Google Scholar 

  76. A. Fernández-Pérez, M. Sandoval-Paz, Synthesis and characterization of chemically deposited CdS thin films without toxic precursors. J. Phys. 720, 012029 (2016)

    Google Scholar 

  77. C. Lokhande, S. Pawar, Optical and transport properties of chemical bath deposited CdS: Al films. Solid State Commun. 44, 1137–1139 (1982)

    CAS  Google Scholar 

  78. A.E. Abken, D.P. Halliday, K. Durose, Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition. J. Appl. Phys. 105, 064515 (2009)

    Google Scholar 

  79. K. Usha, R. Sivakumar, C. Sanjeeviraja, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013)

    Google Scholar 

  80. D. Panda, T.-Y. Tseng, Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films 531, 1–20 (2013)

    CAS  Google Scholar 

  81. M.V. Fischetti, W.G. Vandenberghe, Dielectric properties of semiconductors, in Advanced Physics of Electron Transport in Semiconductors and Nanostructures, ed. by M.V. Fischetti, W.G. Vandenberghe (Springer, Cham, 2016), pp. 223–251. https://doi.org/10.1007/978-3-319-01101-1

    Chapter  Google Scholar 

  82. M.-S. Kim, K.-G. Yim, J.-S. Son, J.-Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235–1241 (2012)

    CAS  Google Scholar 

  83. T. Mitsuyu, K. Ohkawa, T. Karasawa, Nonlinear optical thin-film, US Patent 5,079,594 (7 Jan 1992)

  84. M. Yoshida, Y. Manabe, T. Mitsuyu, I. Tanahashi, Nonlinear, optical thin-films and manufacturing method thereof, U.S. Patent No. 5,113,473 (12 May 1992)

  85. S. Mathew, B. Samuel, A. Mujeeb, M. Kailasnath, V.P.N. Nampoori, C.P. Girijavallabhan, Effect of Au coating on optical properties of CdS nanoparticles and their optical limiting studies. Opt. Mater. 72, 673–679 (2017)

    CAS  Google Scholar 

  86. A.A. Ziabari, F. Ghodsi, Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)

    Google Scholar 

  87. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399–404 (2003)

    Google Scholar 

  88. R. Adair, L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989)

    CAS  Google Scholar 

  89. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    CAS  Google Scholar 

  90. J. Fournier, E. Snitzer, The nonlinear refractive index of glass. IEEE J. Quantum Electron. 10, 473–475 (1974)

    Google Scholar 

  91. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)

    Google Scholar 

  92. J. Wynne, Nonlinear optical spectroscopy of χ(3) in LiNb O 3. Phys. Rev. Lett. 29, 650 (1972)

    CAS  Google Scholar 

  93. H. Nasu, J.D. Mackenzie, Nonlinear optical properties of glasses and glass or gel-based composites. Opt. Eng. 26, 262102 (1987)

    Google Scholar 

  94. P. Sharma, S. Katyal, Linear and nonlinear refractive index of As–Se–Ge and Bi doped As–Se–Ge thin films. J. Appl. Phys. 107, 113527 (2010)

    Google Scholar 

  95. M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Tailoring the linear and nonlinear optical properties of NiO thin films through Cr 3 + doping. J. Mater. Sci. 29, 6446–6457 (2018)

    CAS  Google Scholar 

  96. E. Shaaban, M. El-Hagary, H.S. Hassan, Y.A. Ismail, M. Emam-Ismail, A. Ali, Structural, linear and nonlinear optical properties of co-doped ZnO thin films. Appl. Phys. A 122, 20 (2016)

    Google Scholar 

  97. L.W. Tutt, A. Kost, Optical limiting performance of C60 and C70 solutions. Nature 356, 225 (1992)

    CAS  Google Scholar 

  98. G.L. Wood, W.W. Clark, M.J. Miller, G.J. Salamo, E.J. Sharp, Evaluation of passive optical limiters and switches. Proc. SPIE 1105, Materials for Optical Switches, Isolators, and Limiters, International Society for Optics and Photonics, Proc. SPIE 1105, Materials for Optical Switches, Isolators, and Limiters, 30 August 1989, pp. 154–181

  99. L.G. Holmen, M.W. Haakestad, Optical limiting properties and z-scan measurements of carbon disulfide at 2.05 μm wavelength. JOSA B 33, 1655–1660 (2016)

    CAS  Google Scholar 

  100. P. Poornesh, P.K. Hegde, G. Umesh, M. Manjunatha, K. Manjunatha, A. Adhikari, Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Opt. Laser Technol. 42, 230–236 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P. 2/42/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shkir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., Shaikh, S.S. & AlFaify, S. An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications. J Mater Sci: Mater Electron 30, 17469–17480 (2019). https://doi.org/10.1007/s10854-019-02097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02097-z

Navigation