Skip to main content
Log in

One-step fabrication of InxGa1−xSb nanowires by vapor transport method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We try to synthesize InxGa1−xSb nanowires on silicon (100) substrate using InSb and GaSb as source materials and we succeeded. Au film was used as catalysts. The experiment is simple and repeatable. The diameter of the grown nanowires is 60–200 nm and up to 10 microns in length. The grown nanowires have good crystallinity. Due to the doping of indium, we found that the XRD peaks of nanowires were shifted. We have fabricated fully nanostructured device using ultra-long Ag nanowires as electrodes for the I–V characteristic study, and found that the device has photoresponse characteristics and the I–V characteristic curve was asymmetric, we explain that it was due to the asymmetry of this fully nanostructured devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001). https://doi.org/10.1038/35051047

    Article  CAS  Google Scholar 

  2. J. Du, J. Xing, C. Ge, H. Liu, H. Gao, Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. J. Phys. D (2016). https://doi.org/10.1088/0022-3727/49/42/425105

    Article  Google Scholar 

  3. H. Chen, X. Sun, K.W.C. Lai, M. Meyyappan, X. Ning, Infrared detection using an InSb nanowire. IEEE Nano-technol. Mater. Devices Conf. (2009). https://doi.org/10.1109/nmdc.2009.5167558

    Article  Google Scholar 

  4. A. Aissat, F. Benyettou, J.P. Vilcot, InSb/GaAs quantum dot solar cell. IEEE Renew. Sustain. Energy Conf. (2017). https://doi.org/10.1109/irsec.2016.7984053

    Article  Google Scholar 

  5. C.H. Kuo, J.M. Wu, S.J. Lin, W.C. Chang, High sensitivity of middle-wavelength infrared photodetectors based on an individ-ual InSb nanowire. Nanoscale Res. Lett. 8, 1–8 (2013). https://doi.org/10.1186/1556-276x-8-327

    Article  Google Scholar 

  6. R.B. Yang, J. Bachmann, E. Pippel, A. Berger, Jörg Woltersdorf, Ulrich Gösele et al., Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires. Adv. Mater. 21(31), 3170–3174 (2010). https://doi.org/10.1002/adma.200803436

    Article  CAS  Google Scholar 

  7. H.C. Ho, Z.Y. Gao, H.K. Lin, P.C. Chiu, Y.M. Hsin, J.I. Chyi, Device characteristics of InGaSb/AlSb high-hole-mobility FETS. IEEE Electron Device Lett. 33(7), 964–966 (2012). https://doi.org/10.1109/LED.2012.2193656

    Article  CAS  Google Scholar 

  8. T. Kaneko, H. Asahi, Y. Okuno, S.I. Gonda, Mombe (metalorganic molecular beam epitaxy) growth of InGaSb on GaSb. J. Cryst. Growth 95(1), 158–162 (1991). https://doi.org/10.1016/0022-0248(89)90372-2

    Article  Google Scholar 

  9. G. Balakrishnan, S.H. Huang, A. Khoshakhlagh, P. Hill, A. Amtout, S. Krishna et al., Room-temperature optically-pumped InGaSb quantum well lasers monolithically grown on Si(100) substrate. Electron. Lett. 41(9), 531 (2005). https://doi.org/10.1049/el:20050564

    Article  CAS  Google Scholar 

  10. K. Takei, M. Madsen, H. Fang, R. Kapadia, S. Chuang, H.S. Kim et al., Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors. Nano Lett. 12(4), 2060–2066 (2012). https://doi.org/10.1021/nl300228b

    Article  CAS  Google Scholar 

  11. Z.X. Yang, N. Han, M. Fang, H. Lin, H.Y. Cheung, S.P. Yip et al., Surfactant-assisted chemical vapour deposition of high-performance small-diameter gasb nanowires. Nat. Commun. 5, 5249 (2014). https://doi.org/10.1038/ncomms6249

    Article  CAS  Google Scholar 

  12. Z. Algarni, A. Singh, U. Philipose, Synthesis of amorphous InSb nanowires and a study of the effects of laser radiation and thermal annealing on nanowire crystallinity. Nanomaterials 8(8), 607 (2018). https://doi.org/10.3390/nano8080607

    Article  CAS  Google Scholar 

  13. Q. An, X. Meng, L. Zhang, Y. Zhao, Controllable growth of single crystalline CDS nanotubes by thermal evaporation. Mater. Lett. 136, 55–58 (2014). https://doi.org/10.1016/j.matlet.2014.08.029

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 9(30), 25465–25473 (2017). https://doi.org/10.1021/acsami.7b07146

    Article  CAS  Google Scholar 

  15. Y. Wang, J. Chi, K. Banerjee, D. Grützmacher, T. Schäpers, J.G. Lu, Field effect transistor based on single crystalline InSb nanowire. J. Mater. Chem. 21, 2459–2462 (2011). https://doi.org/10.1039/c0jm03855e

    Article  CAS  Google Scholar 

  16. T.C. Thomas, R.S. Williams, Solid phase equilibria in the Au-Ga-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb ternaries. J. Mater. Res. 1(2), 352–360 (1986). https://doi.org/10.1557/JMR.1986.0352

    Article  Google Scholar 

  17. Q. An, X. Meng, K. Xiong, Y. Qiu, A high-performance fully nanostructured individual CdSe nanotube photodetector with enhanced responsivity and photoconductive gain. J. Mater. Chem. C 5(28), 7057–7066 (2017). https://doi.org/10.1039/C7TC01650F

    Article  CAS  Google Scholar 

  18. H.Y. Chen, K.W. Liu, X. Chen, Z.Z. Zhang, M.M. Fan, M.M. Jiang et al., Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J. Mater. Chem. C 2(45), 9689–9694 (2014). https://doi.org/10.1039/c4tc01839g

    Article  CAS  Google Scholar 

  19. D. Li, X. Sun, H. Song, Z. Li, H. Jiang, Y. Chen et al., Effect of asymmetric schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99(26), 261102 (2011). https://doi.org/10.1063/1.3672030

    Article  CAS  Google Scholar 

  20. Z. Zhang, J.T. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012). https://doi.org/10.1021/cr3000626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (Nos. U1631110). The authors would like to acknowledge the Center for Electron Microscopy at Wuhan University for their substantial supports to TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianquan Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Meng, X. One-step fabrication of InxGa1−xSb nanowires by vapor transport method. J Mater Sci: Mater Electron 30, 17440–17446 (2019). https://doi.org/10.1007/s10854-019-02094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02094-2

Navigation