Skip to main content
Log in

Effect of phase transition on optical and photoluminescence properties of nano-MgWO4 phosphor prepared by a gamma-ray irradiation assisted polyacrylamide gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study demonstrates the synthesis of the MgWO4 nanoparticles by a gamma-ray irradiation assisted polyacrylamide gel method through using the citric acid as chelating agent and H2WO4 and Mg(NO3)2·6H2O as starting materials. The anorthic MgWO4 phase can be prepared at a sintering temperature of 600 °C. As the calcination temperature is above 800 °C, a mixed phase including anorthic and monoclinic MgWO4 phases are observed. The prepared MgWO4 particles are almost spherical and the particle size increases with the increasing of sintering temperature. The optical and photoluminescence properties of the MgWO4 nanoparticles change appears to be strongly dependent on the calcining temperature and phase transition. The photoluminescence spectra show that a major emission band around 430 nm is observed when the excitation wavelength is 340 nm of the MgWO4 xerogel powders calcined at below 600 °C. The intensity of emission peak at 430 nm decreases with the decreasing of sintering temperature. In addition, a major emission band around 468 nm is observed when the excitation wavelength is 280 nm of the MgWO4 xerogel powders calcined at above 700 °C. The intensity of emission peak at 468 nm increases with the increasing of sintering temperature. The result confirmed that the anorthic MgWO4 no luminous for the first time. The photofluorescence enhancement of MgWO4 nanoparticles can be attributed to the type-I band alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.D. Kumar, S. Karuppuchamy, Synthesis and characterization of nanostructured Zn-WO3 and ZnWO4 by simple solution growth technique. J. Mater. Sci. 26, 3256–3261 (2015)

    Google Scholar 

  2. J. Meng, T. Chen, X. Wei, J.X. Li, Z. Zhang, Template-free hydrothermal synthesis of MgWO4 nanoplates and their application as photocatalysts. RSC Adv. 9, 2567 (2019)

    Article  Google Scholar 

  3. V.B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, L. Vasylechko, Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system. J. Phys. 20, 365219 (2008)

    Google Scholar 

  4. M. Gancheva, A. Naydenov, R. Iordanova, D. Nihtianova, P. Stefanov, Mechanochemically assisted solid state synthesis, characterization and catalytic properties of MgWO4. J. Mater. Sci. 50, 3447–3456 (2015)

    Article  Google Scholar 

  5. S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394–4399 (2014)

    Article  Google Scholar 

  6. J. Ruiz-Fuertes, D. Errandonea, S. Lo´pez-Moreno, J. Gonza´lez, O. Gomis, R. Vilaplana, F.J. Manjo´n, A. Mun˜oz, P. Rodrı´guez Herna´ndez, A. Friedrich, I.A. Tupitsyna, High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: comparison with isomorphic compounds. Phys. Rev. B 83, 214112 (2011)

    Article  Google Scholar 

  7. P.D. Bhuyan, D. Singh, S. Kansara, P. Yadav, S.K. Gupta, Y. Sonvane, S.K. Rout, E. Sinha, Experimental and theoretical analysis of electronic and optical properties of MgWO4. J. Mater. Sci. 52, 4934–4943 (2017)

    Article  Google Scholar 

  8. D. WookKim, I.S. Cho, S.S. Shin, S. Lee, T.H. Noh, D.H. Kim, H.S. Jung, K.S. Hong, Electronic band structures and photovoltaic properties of MWO4 (M = Zn, Mg, Ca, Sr) compounds. J. Solid State Chem. 184, 2103–2107 (2011)

    Article  Google Scholar 

  9. M. Zhang, J. Zhai, J. Zhang, H. Jiang, X. Yao, Effect of MgWO4 content on properties of Ba0.5Sr0.5TiO3 composite ceramics for tunable microwave applications. Mater. Res. Bull. 46, 1102–1106 (2011)

    Article  Google Scholar 

  10. S. Wannapop, T. Thongtemb, S. Thongtem, Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning—calcination combinations. Appl. Surf. Sci. 258, 4971–4976 (2012)

    Article  Google Scholar 

  11. H. Gao, H. Yang, S. Wang, Comparative study on optical and electrochemical properties of MFe2O4 (M = Mg, Ca, Ba) nanoparticles. Trans. Indian Ceram. Soc. 77, 150–160 (2018)

    Article  Google Scholar 

  12. J.P. Chu, I.J. Hsieh, J.T. Chen, M.S. Feng, Growth of MgWO4 phosphor by RF magnetron sputtering. Mater. Chem. Phys. 53, 172–178 (1998)

    Article  Google Scholar 

  13. R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

    Article  Google Scholar 

  14. Q. Guo, O.J. Kleppa, Enthalpies of formation from the component oxides of MgWO4, CaWO4 (scheelite), SrWO4, and BaWO4, determined by high-temperature direct synthesis calorimetry. Thermochim. Acta 288, 53–61 (1996)

    Article  Google Scholar 

  15. E. Nuraiena Sota, F. Che Ros, J. Hassan, Synthesis and characterisation of AWO4 (A = Mg, Zn) tungstate ceramics. J. Phys: Conf. Ser. 1083, 012002 (2018)

    Google Scholar 

  16. F.A. Danevich, D.M. Chernyak, A.M. Dubovik, B.V. Grinyov, S. Henry, H. Kraus, V.M. Kudovbenko, V.B. Mikhailik, L.L. Nagornaya, R.B. Podviyanuk, O.G. Polischuk, I.A. Tupitsyna, Y.Y. Vostretsov, MgWO4-A new crystal scintillator. Nucl. Phys. A 608, 107–115 (2009)

    Google Scholar 

  17. J. Kim, J. Yeon Do, N.K. Park, J.P. Hong, M. Kang, Adsorption/desorption behavior of carbonyl sulfide gas on Scheelite type MWO4 adsorbent. Sep. Purif. Technol. 207, 58–67 (2018)

    Article  Google Scholar 

  18. S. Wang, D. Li, C. Yang, G. Sun, J. Zhang, Y. Xia, A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts. J. Sol-Gel Sci. Technol. 84, 169–179 (2017)

    Article  Google Scholar 

  19. H.J. Gao, H. Yang, S.F. Wang, D. Li, F. Wang, L.M. Fang, A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties. J. Sol-Gel Sci. Technol. 86, 206–216 (2018)

    Article  Google Scholar 

  20. S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C–O functional groups decorating spinel type magnesium aluminate. CrystEngComm 21, 263–277 (2019)

    Article  Google Scholar 

  21. H. Gao, H. Yang, S. Wang, X. Zhao, Optical and electrochemical properties of perovskite type MAlO3 (M = Y, La, Ce) pigments synthesized by a gamma-ray irradiation assisted polyacrylamide gel route. Ceram. Int. 44, 14754–14766 (2018)

    Article  Google Scholar 

  22. S.F. Wang, C. Zhang, G. Sun, B. Chen, X. Xiang, H. Wang, Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material. Opt. Mater. 36, 482–488 (2013)

    Article  Google Scholar 

  23. J.B. Huang, W. Lu, J. Wang, Q.F. Li, B.S. Tian, C.Y. Li, Z.L. Wang, L. Jin, J.H. Hao, Strategy to enhance the luminescence of lanthanide ions doped MgWO4 nanosheets through incorporation of carbon dots. Inorg. Chem. 57, 8662–8672 (2018)

    Article  Google Scholar 

  24. Y. Zu, Y. Zhang, K. Xu, F. Zhao, Graphene oxide-MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. RSC Adv. 6, 31046–31052 (2016)

    Article  Google Scholar 

  25. N. Rahmat, Z. Yaakob, M. Pudukudy, N.A. Rahman, S.S. Jahaya, Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties. Powder Technol. 329, 409–419 (2018)

    Article  Google Scholar 

  26. A.N. Ay, B. Zümreoglu-Karan, A. Temel, V. Rives, Bioinorganic magnetic core–shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg–Al-layered double hydroxides supported on magnesium ferrite. Inorg. Chem. 48, 8871–8877 (2009)

    Article  Google Scholar 

  27. J.D. Pless, H.S. Kim, J.P. Smit, X.D. Wang, P.C. Stair, K.R. Poeppelmeier, Structure of Mg2.56V1.12W0.88O8 and vibrational Raman spectra of Mg2.5VWO8 and Mg2.5VMoO8. Inorg. Chem. 45, 514–520 (2006)

    Article  Google Scholar 

  28. J.R. Gunter, M. Amberg, ‘‘High-temperature’’ magnesium tungstate, prepared at moderate temperature. Solid State Ion. 32, 141–146 (1989)

    Article  Google Scholar 

  29. V.V. Fomichev, O.I. Kondratov, Vibration spectra of compounds with the wolframite structure. Spectrochim. Acta A 50, 1113–1120 (1994)

    Article  Google Scholar 

  30. S.Y. Wang, H. Yang, X.X. Wang, W.J. Feng, Surface disorder engineering of flake-like Bi2WO6 crystals for enhanced photocatalytic activity. J. Electron. Mater. 48, 2067–2076 (2019)

    Article  Google Scholar 

  31. Y. Xia, Z. He, W. Yang, B. Tang, Y. Lu, K. Hu, J. Su, X. Li, Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity. Mater. Res. Express 5, 025504 (2018)

    Article  Google Scholar 

  32. X.X. Zhao, H. Yang, H.M. Zhang, Z.M. Cui, W.J. Feng, Surface-disorder-engineering-induced enhancement in the photocatalytic activity of Bi4Ti3O12 nanosheets. Desalin. Water Treat. 145, 326–336 (2019)

    Article  Google Scholar 

  33. S.F. Wang, C.F. Zhuang, Y.G. Yuan, X. Xiang, G.Z. Sun, Q.P. Ding, Synthesis and photoluminescence of γ-Al2O3 and C-doped γ-Al2O3 powders. Trans. Indian Ceram. Soc. 73, 37–42 (2014)

    Article  Google Scholar 

  34. N.R. Krutyak, D.A. Spassky, I.A. Tupitsyna, A.M. Dubovik, Influence of peculiarities of electronic excitation relaxation on luminescent properties of MgWO4. Opt. Spectrosc. 121, 45–51 (2016)

    Article  Google Scholar 

  35. K.Y. Ban, D. Kuciauskas, S.P. Bremner, C.B. Honsberg, Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence. J. Appl. Phys. 111, 1412 (2012)

    Article  Google Scholar 

  36. J. Song, J. Zhou, W. Wang, Y. Liu, X. Li, X. Xu, Growth mechanism and photoluminescent properties of AlN/ZnO heterostructures. J. Phys. Chem. C 114, 10761–10767 (2010)

    Article  Google Scholar 

  37. Y.J. Hong, J.M. Jeon, M. Kim, S.R. Jeon, K. Ho Park, G.C. Yi, Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications. New J. Phys. 11, 125021 (2009)

    Article  Google Scholar 

  38. J. He, C.J. Reyner, B.L. Liang, K. Nunna, D.L. Huffaker, N. Pavarelli, K. Gradkowski, T.J. Ochalski, G. Huyet, V.G. Dorogan, YuI Mazur, G.J. Salamo, Band alignment tailoring of InAs1-xSbx/GaAs quantum dots: control of type I to type II transition. Nano Lett. 10, 3052–3056 (2010)

    Article  Google Scholar 

  39. Y. Xia, Z. He, J. Su, Y. Liu, B. Tang, Fabrication and photocatalytic property of novel SrTiO3/Bi5O7I nanocomposites. Nano. Res. Lett. 13, 148 (2018)

    Article  Google Scholar 

  40. Y. Yan, H. Yang, X. Zhao, R. Li, X. Wang, Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 105, 286–290 (2018)

    Article  Google Scholar 

  41. Y. Xia, Z. He, K. Hu, B. Tang, J. Su, Y. Liu, X. Li, Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance. J. Alloys Compd. 753, 356–363 (2018)

    Article  Google Scholar 

  42. V. Pfeifer, P. Erhart, S. Li, K. Rachut, J. Morasch, J. Brötz, P. Reckers, T. Mayer, S. Rühle, A. Zaban, I. Mora Seró, J. Bisquert, W. Jaegermann, A. Klein, Energy band alignment between anatase and rutile TiO2. J. Phys. Chem. Lett. 4, 4182–4187 (2013)

    Article  Google Scholar 

  43. H.J. Gao, F. Wang, S.F. Wang, X.X. Wang, Z. Yi, H. Yang, Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater. Res. Bull. 115, 140–149 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Talent Introduction Project (09924601) and Major Cultivation Projects (18ZDPY01) and Research project of higher education teaching reform (JGZC1903) of Chongqing Three Gorges University, the Chongqing basic research and frontier exploration (general project) (cstc2019jcyj-msxm1327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifa Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, H., Chen, C. et al. Effect of phase transition on optical and photoluminescence properties of nano-MgWO4 phosphor prepared by a gamma-ray irradiation assisted polyacrylamide gel method. J Mater Sci: Mater Electron 30, 15744–15753 (2019). https://doi.org/10.1007/s10854-019-01960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01960-3

Navigation