Skip to main content
Log in

Infrared spectroscopy studies of localized vibrations in neutron irradiated silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigate neutron irradiation-induced defects in p-type Czochralski silicon (Cz–Si) subjected initially to heat treatments under high hydrostatic pressure (HTHP), by means of infrared spectroscopy (IR). A pair of bands at 592 and 883 cm−1 arises in the spectra immediately after irradiation and disappears upon isochronal annealing just below 350 °C in as-grown Si, although they disappear at a smaller temperature ~ 280 °C in the HTHP treated Si. Another pair of bands at 535 and 556 cm−1 arises in the spectra at ~ 320 °C and disappears at ~ 430 °C in as-grown Si, although they show a shift in their thermal stability of ~ 50 °C towards lower temperatures in HTHP Si. The activation energies characterizing their annihilation were found smaller in the HTHP Si, for each one of the four bands correspondingly. It is argued that the applied hydrostatic pressure affects the annealing behavior of the bands promoting their annihilation. From the LVM frequency values, the temperature range they appear and their annealing behavior we tentatively correlate them with structures involving self-interstitial clusters, presumably perturbed by an impurity atom. Four other bands at 562, 642, 654 and 678 cm−1 show similar thermal stability arising in the spectra in the course of the isochronal annealing at ~ 250 °C and disappearing at ~ 400 °C, both in as-grown and in HTHP Si. However, the changes exhibited in the values of the activation energies of the bands between the HTHP and the as-grown Si, suggest that may not all of them have exactly the same origin, at least the 678 cm−1 band. The origin of the above family of bands is discussed in regards with previous works reported in the literature. Connection with complexes comprising boron atoms and self interstitials, in short (Bn–SiIm), was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.G. Cloutier, P.A. Kossyrev, J. Xu, Nat. Mater. 4, 877 (2005)

    Article  Google Scholar 

  2. E. Rotem, J.M. Shainline, J.M. Xu, Appl. Phys. Lett. 91, 051127 (2007)

    Article  Google Scholar 

  3. G. Kramberger, Nucl. Instrum. Methods A583, 49 (2007)

    Article  Google Scholar 

  4. D.D. Berhanuddin, M.A. Lourenço, R.M. Gwilliam, K.P. Homewood, Adv. Funct. Mater. 22, 2709 (2012)

    Article  Google Scholar 

  5. C. Gao, X. Ma, J. Zhao, D. Yang, J. Appl. Phys. 113, 093511 (2013)

    Article  Google Scholar 

  6. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, J. Nucl. Mater. 512, 450 (2018)

    Article  Google Scholar 

  7. K. Sueoka, E. Kamiyama, P. Spiewak, J. Vanhellemont, ECS J. Solid State Sci. Technol. 5, 3176 (2016)

    Article  Google Scholar 

  8. G.D. Watkins, Mater. Sci. Semicond. Process. 3, 227 (2000)

    Article  Google Scholar 

  9. Y.-H. Lee, N.N. Gerasimenko, J.W. Corbett, Phys. Rev. B 14, 4506 (1976)

    Article  Google Scholar 

  10. Y.-H. Lee, Appl. Phys. Lett. 73, 1119 (1998)

    Article  Google Scholar 

  11. A. Carvalho, R. Jones, J. Continho, P.R. Briddon, Phys. Rev. B 72, 155208 (2005)

    Article  Google Scholar 

  12. C.A. Londos, G. Antonaras, A. Chroneos, J. Appl. Phys. 114, 043502 (2013)

    Article  Google Scholar 

  13. C.A. Londos, L.G. Fytros, G.J. Georgiou, Defect Diffus. Forum 171–172, 1 (1999)

    Article  Google Scholar 

  14. C.A. Londos, Phys. Status Solidi (a) 102, 639 (1987); C.A. Londos, ibid 92, 609 (1985)

  15. M. Potsidi, C.A. Londos, J. Appl. Phys. 100, 033523 (2006)

    Article  Google Scholar 

  16. C.A. Londos, D.N. Aliprantis, G. Antonaras, M.S. Potsidi, T. Angeletos, J. Appl. Phys. 123, 145702 (2018)

    Article  Google Scholar 

  17. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlogl, Sci. Rep. 4, 4909 (2014)

    Article  Google Scholar 

  18. K. Laithwaite, R.C. Newman, D.H.-J. Totterdell, J. Phys. C 8, 236 (1975)

    Article  Google Scholar 

  19. N. Fukata, T. Ohori, M. Suezawa, H. Takhahashi, J. Appl. Phys. 91, 5891 (2002)

    Article  Google Scholar 

  20. D. Pierreux, A. Stesmans, Phys. Rev. B 68, 193208 (2003)

    Article  Google Scholar 

  21. A. Borghesi, B. Pivac, A. Sassella, A. Stella, J. Appl. Phys. 77, 4169 (1995)

    Article  Google Scholar 

  22. V.V. Emtsev Jr., C.A.J. Ammerlaan, V.V. Emtsev, G.A. Oganesian, B.A. Andreev, D.I. Knritsgn, A. Misiuk, B. Surma, C.A. Londos, Phys. Status Solidi B 235, 75 (2003)

    Article  Google Scholar 

  23. A. Misiuk, J. Bak-Misiuk, A. Bacez, A. Romano-Rondriguez, I.V. Antonova, V.P. Popov, C.A. Londos, J. Jun, Int. J. Hydrog. Energy 26, 483 (2001)

    Article  Google Scholar 

  24. V. Gusakov, L. Murin, Phys. B 340–342, 773 (2003)

    Article  Google Scholar 

  25. M.D. McCluskey, J. Appl. Phys. 87, 3593 (2000)

    Article  Google Scholar 

  26. A.Misuik, in Early Stages of Oxygen Precipitation in Silicon, (NATO ASI Series, 3. High Technology), ed. by R. Jones (Kluwer Academic Publishers, Dordrecht, 1989), p. 485

    Google Scholar 

  27. C. Cui, X. Ma, D. Yang, J. Appl. Phys. 104, 123523 (2008)

    Article  Google Scholar 

  28. P. Wang, C. Cui, X. Yu, D. Yang, Mater. Sci. Semicond. Proc. 74, 369 (2018)

    Article  Google Scholar 

  29. A. Misiuk, Mater. Phys. Mech. 1, 119 (2000)

    Google Scholar 

  30. L.I. Murin, B.G. Svensson, J.L. Lindstrom, V.P. Markevich, C.A. Londos, Solid State Phenom. 156-158, 129 (2010)

    Article  Google Scholar 

  31. P. Dong, P. Yang, X. Yu, L. Chen, Y. Ma, M. Li, G. Dai, J. Zhang, J. Electron. Mater. 47, 5019 (2018)

    Article  Google Scholar 

  32. E.V. Lavrov, L. Hoffman, B.B. Nielsen, Phys. Rev. B 60, 8081 (1999)

    Article  Google Scholar 

  33. C.A. Londos, G.D. Antonaras, M.S. Potsidi, D.N. Aliprantis, A. Misiuk, J. Mater. Sci. 18, 721 (2007)

    Google Scholar 

  34. G. Davies, R.C. Newman, in Handbook on Semiconductors, Materials Properties and Preparations, ed. by T.S. Moss, S. Mahajan (Elsevier, Amsterdam, 1994), p. 1557

    Google Scholar 

  35. G. Davies, Phys. Rep. 176, 83 (1989)

    Article  Google Scholar 

  36. G. Davies, S. Hayama, L. Murin, R. Klause-Rehberg, V. Bondarenko, C. Davia, A. Karpenko, Phys. Rev. B 73, 165202 (2006)

    Article  Google Scholar 

  37. N. Burger, K. Thonke, R. Sauer, Phys. Rev. Lett. 22, 1645 (1984)

    Article  Google Scholar 

  38. Y. Yang, J. Bao, C. Wang, M.J. Aziz, J. Appl. Phys. 107, 123109 (2010)

    Article  Google Scholar 

  39. C. Chartrand, L. Bergeron, K.J. Morse, H. Riemann, N. Abrosimov, P. Becher, H.-J. Pohl, S. Simmons, M.L.W. Thewalt, Phys. Rev. B 98, 195201 (2018)

    Article  Google Scholar 

  40. D. Pierreux, A. Stesmans, Phys. Rev. B 71, 115204 (2005)

    Article  Google Scholar 

  41. S. Hayama, G. Davies, K.M. Itoh, J. Appl. Phys. 96, 1754 (2004)

    Article  Google Scholar 

  42. M. Cogoni, B.P. Uberuaga, A.F. Voter, L. Colombo, Phys. Rev. B 71, 121203(R) (2005)

    Article  Google Scholar 

  43. M. Posselt, F. Gao, D. Zwicker, Phys. Rev. B 71, 245202 (2005)

    Article  Google Scholar 

  44. G.M. Lopez, V. Fiorentine, Phys. Rev. B 69, 155206 (2004)

    Article  Google Scholar 

  45. D.A. Richi, J. Kim, S.A. Barr, K.R.A. Hazard, J.W. Wilkins, Phys. Rev. Lett. 92, 045501 (2004)

    Article  Google Scholar 

  46. V.D. Tkachev, A.A.V. Mudryi, N.S. Minaev, Phys. Status Solidi (a) 81, 313 (1984)

    Article  Google Scholar 

  47. Y.H. Lee, J.C. Corelli, J.W. Corbett, Phys. Lett. 60A, 55 (1977)

    Article  Google Scholar 

  48. E.A. Tolkacheva, V.P. Markrvich, L.I. Murin, Semiconductors 52, 1097 (2018)

    Article  Google Scholar 

  49. T. Mchedlidze, M. Suezawa, Solid State Phenom. 95–96, 129 (2004)

    Google Scholar 

  50. B.J. Coomer, J.P. Goss, R. Jones, S. Oberg, P.R. Briddon, J. Phys. 13, L1 (2001)

    Google Scholar 

  51. M. Nakamura, S. Murakani, J. Appl. Phys. 94, 3075 (2003)

    Article  Google Scholar 

  52. S. Libertino, S. Coffa, J.L. Benton, Phys. Rev. B 63, 195206 (2001)

    Article  Google Scholar 

  53. D.C. Schmidt, B.G. Svensson, M. Seibt, C. Jagadish, G. Davies, J. Appl. Phys. 88, 2309 (2000)

    Article  Google Scholar 

  54. R.C. Newman, D.H.J. Totterdell, J. Phys. C 8, 3944 (1975)

    Article  Google Scholar 

  55. N. Fukuoka, K. Nakata, M. Honda, K. Atobe, T. Kawakubo, in Defect Control in Semiconductors, ed. by K. Sumino (Elseviers Science Publishers, Amsterdam, 1990), p. 547

    Google Scholar 

  56. I.V. Antonova, C.A. Londos, J. Bak-Misiuk, A.K. Gutakovskii, M.S. Potsidi, A. Misiuk, Phys. Status Solidi (a) 199, 207 (2003)

    Article  Google Scholar 

  57. J. Jung, M. Lefeld-Sosnowska, Philos. Mag. 50, 233 (1984)

    Article  Google Scholar 

  58. A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983)

    Article  Google Scholar 

  59. J. Dzelme, I. Ertsinsh, B. Zapol, A. Misiuk, J. Alloys Compd. 286, 254 (1999)

    Article  Google Scholar 

  60. M.L. Cohen, Phys. Status Solidi (a) 235, 221 (2003)

    Article  Google Scholar 

  61. N.E. Christensen, I. Gorczyca, A. Svane, N. Gonzalez Szwacki, P. Boguslawski, Phys. Status Solidi (a) 235, 374 (2003)

    Article  Google Scholar 

  62. K. Sueoka, E. Kamiyama, H. Kariyazaki, J. Venhellemont, Phys. Status Solidi (c) 9, 1947 (2012)

    Article  Google Scholar 

  63. F.G. Manjon, D. Errandonea, Phys. Status Solidi (b) 246, 9 (2009)

    Article  Google Scholar 

  64. A. Misiuk, H.B. Surma, J. Bac-Misiuk, M. Lopez, A. Romano-Rodriguez, H. Hartwig, J. Alloys Compd. 328, 90 (2001)

    Article  Google Scholar 

  65. H. Park, K.S. Jones, J.A. Sinkman, M.E. Law, J. Appl. Phys. 78, 3664 (1995)

    Article  Google Scholar 

  66. M. Lannoo, J. Borguin, Point Defects in Semiconductors I: Theoretical Aspects (Springer-Verlag, Berlin, 1981)

    Book  Google Scholar 

  67. H. Stein, G.A. Samara, Radiation Effects and Defects in Solids (Gordon and Breach Science Publishers, London, 1989). https://doi.org/10.1080/10420158908213015

    Google Scholar 

  68. S. Mitha, S.D. Theiss, M.J. Aziz, D. Schiferl, D.B. Poker, Phys. Appl. Defects Adv. Semicond. 325, 189 (1994)

    Google Scholar 

  69. V. Gusakov, L. Murin, Phys. B 340–342, 773 (2003)

    Article  Google Scholar 

  70. A. Antonelli, J. Bernholic, Phys. Rev. B 40, 10643 (1989)

    Article  Google Scholar 

  71. S.A. Centoni, B. Sadigh, G.H. Gilmer, T.J. Lenosky, T.D. Rubia, C.B. Musgrave, Phys. Rev. B 72, 195206 (2005)

    Article  Google Scholar 

  72. V. Gusakov, Mat. Sci. Semicond. Proc. 9, 531 (2006)

    Article  Google Scholar 

  73. J. Abey, J.P. Goss, R. Jones, P.R. Briddon, Phys. Rev. B 67, 245325 (2003)

    Article  Google Scholar 

  74. S. Charnvanichborikarn, B.J. Villis, B.C. Johnson, J. Wong-Leung, J.C. McCallum, J.S. Williams, C. Jagadish, Appl. Phys. Lett. 96, 051906 (2010)

    Article  Google Scholar 

  75. C. Johnson, B.J. Villis, J.E. Burgess, J.C. McCallum, S. Charnvanichborikarn, J. Wong-Leung, C. Jagadish, J.S. Williams, Appl. Phys. Lett. 111, 094910 (2012)

    Google Scholar 

  76. G.S. Hwang, W.A. Goddard III, Appl. Phys. Lett. 83, 1047 (2003)

    Article  Google Scholar 

  77. A. Agarwal, H.-J. Gossmann, D.J. Eaglesham, Appl. Phys. Lett. 74, 2331 (1999)

    Article  Google Scholar 

  78. J. Schermer, A. Martinez-Limia, P. Pichler, C. Zechner, W. Lerch, S. Paul, Solid-State Electron. 52, 1424 (2008)

    Article  Google Scholar 

  79. S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, F. Priolo, J. Appl. Phys. 113, 031101 (2013)

    Article  Google Scholar 

  80. S.S. Kapur, T. Sinno, Phys. Rev. B 82, 045205 (2010)

    Article  Google Scholar 

  81. S.S. Kapur, A.M. Nieves, T. Sinno, Phys. Rev. B 82, 045206 (2010)

    Article  Google Scholar 

  82. R.J. Bondi, S. Lee, G.S. Hwang, Phys. Rev. B 80, 125202 (2009)

    Article  Google Scholar 

  83. M. Aboy, I. Santos, P. Lopez, L.A. Marques, L. Pelaz, J. Electron. Mater. 47, 5045 (2018)

    Article  Google Scholar 

  84. M.L. Lee, E.A. Fitgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

T. Angeletos is grateful to the A. S. Onassis Foundation for financial support though his Ph.D scholarship (Grant No. G ZL 001-1/2015–2016). We wish also to thank prof. A. Misiuk for carrying out the HTHP treatments of the samples, in the Institute of Electron Technology, Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. A. Londos or T. Angeletos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londos, C.A., Angeletos, T., Antonaras, G.D. et al. Infrared spectroscopy studies of localized vibrations in neutron irradiated silicon. J Mater Sci: Mater Electron 30, 15345–15355 (2019). https://doi.org/10.1007/s10854-019-01909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01909-6

Navigation