Skip to main content

Advertisement

Log in

A yolk–shell Bi@void@SnO2 photocatalyst with enhanced tetracycline degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The yolk–shell Bi@void@SnO2 photocatalyst was synthesized via a step-by-step process. The composition, morphology, optical and photoelectrochemical properties as well as the surface chemical composition and states of the samples were characterized by X-ray diffraction, transmission electron microscopy, UV–Vis diffuse reflectance spectra, electrochemical impedance spectra and X-ray photoelectron spectrometer, respectively. The tetracycline has been used to evaluate the photocatalytic activities of the as-synthesized samples. Compared with the degradation efficiency of 16.33% for pure Bi and almost nothing for SnO2 under visible light irradiation, the as-developed Bi@void@SnO2 photocatalyst possesses 81.81% of degradation efficiency. Meanwhile, the light absorption of the as-developed yolk–shell composites is broadened from ultraviolet to visible light comparing to pure SnO2 due to the surface plasmon resonance effect of Bi spheres. Moreover, the superoxide radicals, especially in holes, play leading roles during the photocatalytic degradation process. In addition, the decomposition mechanism of the as-fabricated composites for tetracycline is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.C. Zheng, T. Ouyang, Y.B. Chen, Z. Wang, D.Y. Chen, Z.Q. Liu, Catal. Sci. Technol. 9, 1357–1364 (2019)

    Article  Google Scholar 

  2. S. Liu, M.Y. Zhao, Z.T. He, Y. Zhong, H. Ding, D.M. Chen, Chinese J. Catal. 40, 446–457 (2019)

    Article  Google Scholar 

  3. Z.F. Liu, Q.G. Song, M. Zhou, Z.G. Guo, J.H. Kang, H.Y. Yan, Chem. Eng. J. 374, 554–563 (2019)

    Article  Google Scholar 

  4. X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, J.Z. Su, J.R. Zhang, F.F. Yang, Y. Zhang, J.C. Pan, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-1286-6

    Google Scholar 

  5. H.L. Jiang, M.L. Li, J. Liu, X.Q. Li, L. Tian, P.H. Chen, Ceram. Int. 44, 2709–2717 (2017)

    Article  Google Scholar 

  6. L. Wang, P. Wang, B.B. Huang, X.J. Ma, G. Wang, Y. Dai, X.Y. Zhang, X.Y. Qin, Appl. Surf. Sci. 391, 557–564 (2017)

    Article  Google Scholar 

  7. W.K. Su, T. Zhang, L. Li, J. Xing, M.Y. He, Y.J. Zhong, Z.Q. Li, RSC Adv. 4, 8901–8906 (2018)

    Article  Google Scholar 

  8. X.L. Sun, L. Qiao, H. Pang, D. Li, Ionics 23, 1–9 (2017)

    Article  Google Scholar 

  9. Y. Chen, F.Q. Sun, Z.J. Huang, H. Chen, Z.F. Zhuang, Z.Z. Pan, J.F. Long, F.L. Gu, Appl. Catal. B-Environ. 215, 8–17 (2018)

    Article  Google Scholar 

  10. Y.H. Chiu, Y.J. Hsu, Nano Energy 31, 286–298 (2017)

    Article  Google Scholar 

  11. J.L. Zhang, Y. Lu, L. Ge, C.C. Han, Y.J. Li, Y.Q. Gao, S.S. Li, H. Xu, Appl. Catal. B-Environ. 204, 385–393 (2017)

    Article  Google Scholar 

  12. D. Chen, Z.F. Liu, Z.G. Guo, W.G. Yan, Y. Xin, J. Mater. Chem. A 6, 20393–20401 (2018)

    Article  Google Scholar 

  13. F. Dong, T. Xiong, Y.J. Sun, Z.W. Zhao, Y. Zhou, X. Feng, Z.B. Wu, Chem. Commun. 50, 10386–10389 (2014)

    Article  Google Scholar 

  14. J.Y. Xiong, Q.S. Dong, T. Wang, Z.B. Jiao, G.X. Lu, Y.P. Bi, RSC Adv. 4, 583–586 (2013)

    Article  Google Scholar 

  15. D. Du, W. Shi, L.Z. Wang, J.L. Zhang, Appl. Catal. B-Environ. 200, 484–492 (2018)

    Article  Google Scholar 

  16. L.S. Lin, J.B. Song, H.H. Yang, X.Y. Chen, Adv. Mater. (2018). https://doi.org/10.1002/adma.201704639

    Google Scholar 

  17. M. Lei, W. Wu, S.L. Yang, X.G. Zhang, Z. Xing, F. Ren, X.H. Xiao, C.H. Xiao, Part. Part. Syst. Charact. 33, 212–220 (2016)

    Article  Google Scholar 

  18. X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloy. Compd. 740, 1197–1203 (2018)

    Article  Google Scholar 

  19. Y. Zhang, Y.R. Zhang, J. Tan, J. Alloy. Compd. 574, 383–390 (2013)

    Article  Google Scholar 

  20. J. Wang, G.K. Zhang, J. Li, K. Wang, ACS Sustain. Chem. Eng.  (2018). https://doi.org/10.1021/acssuschemeng.8b02869

    Google Scholar 

  21. H.Y. Ji, Y.M. Fan, J. Yan, Y.G. Xu, X.J. She, J.M. Gu, T. Fei, H. Xu, H.M. Li, RSC Adv. 7, 36101–36111 (2017)

    Article  Google Scholar 

  22. G.P. Zhang, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, J. Colloid Interface Sci. 514, 306–315 (2017)

    Article  Google Scholar 

  23. Z.Y. Wang, S. Yan, Y.J. Sun, T. Xiong, F. Dong, W. Zhang, Appl. Catal. B-Environ. 214, 148–157 (2017)

    Article  Google Scholar 

  24. Y.X. Gao, Y. Huang, Y. Li, Q. Zhang, J.J. Cao, W.K. Ho, S.C. Lee, ACS Sustain. Chem. Eng. 4, 6912–6920 (2016)

    Article  Google Scholar 

  25. M.J. Chen, Y. Li, Z.Y. Wang, Y.X. Gao, Y. Huang, J.J. Cao, W.K. Ho, S.C. Lee, Ind. Eng. Chem. Res. 37, 10251–10258 (2017)

    Article  Google Scholar 

  26. H. Li, X.F. Wu, Y. Sun, Z.H. Zhao, C.X. Zhang, F.F. Jia, H. Zhang, M.T. Yu, X.Y. Yang, J. Nanosci. Nanotechno. 18, 999–1005 (2018)

    Article  Google Scholar 

  27. M. Zhou, Z.H. Liu, Q.G. Song, X.F. Li, B. Chen, Z.F. Liu, Appl. Catal. B-Environ. 244, 188–196 (2019)

    Article  Google Scholar 

  28. J.Q. Bai, J. Xue, R.W. Wang, Z.T. Zhang, S.L. Qiu, Dalton. T. 47, 3400–3407 (2018)

    Article  Google Scholar 

  29. Q.R. He, H. Sun, Y.X. Shang, Y.Y. Tang, P. She, S. Zeng, K.L. Xu, G.L. Lu, S. Liang, S.Y. Yin, Z.N. Liu, Appl. Surf. Sci. 441, 458–465 (2018)

    Article  Google Scholar 

  30. X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, X.D. Gong, Y.D. Wang, Y. Liu, X.Y. Yang, Appl. Phys. A-Mater. (2017). https://doi.org/10.1007/s00339-017-1016-0

    Google Scholar 

  31. X.F. Wu, Z.H. Zhao, Y. Sun, H. Li, C.X. Zhang, Y.J. Wang, Y. Liu, Y.D. Wang, X.Y. Yang, X.D. Gong, J. Nanopart. Res. (2017). https://doi.org/10.1007/s11051-017-3892-9

    Google Scholar 

  32. X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, Y.N. Jia, L.S. Sun, W.G. Zhang, M. Zhang, C.Y. Zhang, Appl. Surf. Sci. 473, 992–1001 (2019)

    Article  Google Scholar 

  33. S. Farsinezhad, H. Sharma, K. Shankar, Phys. Chem. Chem. Phys. 17, 29723–29733 (2015)

    Article  Google Scholar 

  34. F. Dong, Q. Li, Y.J. Sun, W.K. Ho, ACS Catal. 4, 4341–4350 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. B2016210111 and E2019210251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Feng Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XF., Wang, YJ., Song, LJ. et al. A yolk–shell Bi@void@SnO2 photocatalyst with enhanced tetracycline degradation. J Mater Sci: Mater Electron 30, 14987–14994 (2019). https://doi.org/10.1007/s10854-019-01871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01871-3

Navigation