Skip to main content

Advertisement

Log in

Carbon encapsulated mixed-metal sulfide as proficient electrocatalyst for hydrogen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Proficient electrocatalyst for hydrogen evolution reaction (HER) synthesized via a single-step, simple and low-temperature pyrolysis method. The mixed metal sulfide catalyst Co9S8/NiS@C shows irregular multi-shaped structure having small pores covered with carbon layers. The as-prepared Co9S8/NiS@C composites are made up of very small intermingled nanoparticles. The tiny nanoparticle contains large surface area that serves as an active-site for excellent HER performances. The Co9S8/NiS@C electrode is tested under alkaline solution performs overpotential (vs. RHE) of 0.28 V at current density of 10 mA cm−2. It exhibits a low Rct with an excellent and continuous stability for 10 h. The excellent HER performances of Co9S8/NiS@C are attributed to shape, size, and crystal structure of mixed metal sulfide and small surface pores that provide abundant active sites for electrocatalysis reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Zhang, W. Liu, Y. Dou, Z. Du, M. Shao, The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs. J. Phys. Chem. C 120, 29047–29053 (2016)

    Article  Google Scholar 

  2. M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu et al., Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 16, 4691–4698 (2016)

    Article  Google Scholar 

  3. X. Li, H. Lei, X. Guo, X. Zhao, S. Ding, X. Gao et al., Graphene-supported pyrene-modified cobalt corrole with a triphenylphosphine axial ligand for enhanced hydrogen evolution in pH 0–14 aqueous solutions. Chemsuschem 10(22), 4632–4641 (2017)

    Article  Google Scholar 

  4. D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu et al., Fabrication of cobalt porphyrin. Electrochemically reduced graphene oxide hybrid Films for electrocatalytic hydrogen evolution in aqueous solution. Langmuir 30, 6990–6998 (2014)

    Article  Google Scholar 

  5. D. Chanda, J. Hnát, A.S. Dobrota, I.A. Pašti, M. Paidar, K. Bouzek, The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 17, 26864–26874 (2015)

    Article  Google Scholar 

  6. L. Wang, Y. Li, M. Xia, Z. Li, Z. Chen, Z. Ma et al., Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sour. 347, 220–228 (2017)

    Article  Google Scholar 

  7. R. Nivetha, S. Chella, P. Kollu, S.K. Jeong, A. Bhatnagar, N.G. Andrews, Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution. J. Magn. Magn. Mater. 448, 165–171 (2018)

    Article  Google Scholar 

  8. H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li et al., Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 7, 8083–8087 (2015)

    Article  Google Scholar 

  9. L. Wang, Y. Li, X. Yin, Y. Wang, A. Song, Z. Ma et al., Coral-like-structured Ni/C3N4 composite coating: an active electrocatalyst for hydrogen evolution reaction in alkaline solution. ACS Sustain. Chem. Eng. 5, 7993–8003 (2017)

    Article  Google Scholar 

  10. Z. Chen, L. Wang, Z. Ma, J. Song, G. Shao, Ni–reduced graphene oxide composite cathodes with new hierarchical morphologies for electrocatalytic hydrogen generation in alkaline media. RSC Adv. 7, 704–711 (2017)

    Article  Google Scholar 

  11. S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar et al., Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem. Int. Ed. 53, 12594–12599 (2014)

    Google Scholar 

  12. L. Wang, Y. Li, X. Yin, Y. Wang, L. Lu, A. Song et al., Comparison of three nickel-based carbon composite catalysts for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 42, 22655–22662 (2017)

    Article  Google Scholar 

  13. Cai Zx, Xh Song, Wang Yr, X. Chen, Electrodeposition–assisted synthesis of Ni2P nanosheets on 3D graphene/Ni foam electrode and its performance for electrocatalytic hydrogen production. ChemElectroChem 2, 1665–1671 (2015)

    Article  Google Scholar 

  14. R.K. Shervedani, M. Torabi, F. Yaghoobi, Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions. Electrochim. Acta 244, 230–238 (2017)

    Article  Google Scholar 

  15. J. Yang, C. Cai, Y. Li, L. Gao, H. Guo, B. Wang et al., In-situ cobalt and nitrogen doped mesoporous graphitic carbon electrocatalyst via directly pyrolyzing hyperbranched cobalt phthalocyanine for hydrogen evolution reaction. Electrochim. Acta 262, 48–56 (2018)

    Article  Google Scholar 

  16. H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015)

    Article  Google Scholar 

  17. B. Rezaei, A.R.T. Jahromi, A.A. Ensafi, Ni–Co–Se nanoparticles modified reduced graphene oxide nanoflakes, an advance electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim. Acta 213, 23–31 (2016)

    Article  Google Scholar 

  18. W. Yuan, X. Wang, X. Zhong, C.M. Li, CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 8, 20720–20729 (2016)

    Article  Google Scholar 

  19. S. Badrayyana, D.K. Bhat, S. Shenoy, Y. Ullal, Novel Fe–Ni–graphene composite electrode for hydrogen production. Int. J. Hydrog. Energy 40, 10453–10462 (2015)

    Article  Google Scholar 

  20. X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao et al., Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015)

    Article  Google Scholar 

  21. C.-K. Cheng, T.-K. Yeh, M.-C. Tsai, H.-Y. Chou, H.-C. Wu, C.-K. Hsieh, The hybrid nanostructure of vertically aligned cobalt sulfide nanoneedles on three-dimensional graphene decorated nickel foam for high performance methanol oxidation. Surf. Coat. Technol. 320, 536–541 (2017)

    Article  Google Scholar 

  22. Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han et al., Facile one-pot synthesis of CoS2–MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 384, 51–57 (2016)

    Article  Google Scholar 

  23. Z. Ma, Q. Zhao, J. Li, B. Tang, Z. Zhang, X. Wang, Three-dimensional well-mixed/highly-densed NiS–CoS nanorod arrays: an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta 260, 82–91 (2018)

    Article  Google Scholar 

  24. C. Zequine, S. Bhoyate, K. Siam, P.K. Kahol, N. Kostoglou, C. Mitterer et al., Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surf. Coat. Technol. 354, 306–312 (2018)

    Article  Google Scholar 

  25. S. Shit, S. Chhetri, W. Jang, N.C. Murmu, H. Koo, Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 10, 27712–27722 (2018)

    Article  Google Scholar 

  26. C. Yu, Y. Wang, J. Zhang, W. Yang, X. Shu, Y. Qin et al., One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance. J. Power Sour. 364, 400–409 (2017)

    Article  Google Scholar 

  27. X. Huang, J. Wang, H. Bao, X. Zhang, Y. Huang, 3D nitrogen, sulfur-codoped carbon nanomaterial-supported cobalt oxides with polyhedron-like particles grafted onto graphene layers as highly active bicatalysts for oxygen-evolving reactions. ACS Appl. Mater. Interfaces 10, 7180–7190 (2018)

    Article  Google Scholar 

  28. Y. Li, Z. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013)

    Article  Google Scholar 

  29. M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang et al., Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015)

    Article  Google Scholar 

  30. S. Hussain, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao et al., Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851–11857 (2016)

    Article  Google Scholar 

  31. X. Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 691, 698–704 (2017)

    Article  Google Scholar 

  32. S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M.S. Wang, G.W. Liu, G.J. Qiao, Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceram. Int. 45, 15164–15170 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572111, 11774136, 51604049), Natural Science Foundation of Jiangsu Province (Grant No. BK20161347), the Six Talent Peaks Project (TD-XCL-004), the 333 Talents project (BRA2017387), the Innovation/Entrepreneurship Program ([2015]26) and the Qing Lan Project ([2016]15) of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Hussain, Yingyi Zhang or Mingsong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Ullah, N., Zhang, Y. et al. Carbon encapsulated mixed-metal sulfide as proficient electrocatalyst for hydrogen evolution reaction. J Mater Sci: Mater Electron 30, 14762–14771 (2019). https://doi.org/10.1007/s10854-019-01848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01848-2

Navigation