Skip to main content
Log in

Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1−xSnx)O3 ceramics elaborated by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric ceramics (Ba0.85Ca0.15)(Ti0.9Zr0.1−xSnx)O3 (x = 0.00, 0.02, 0.04, 0.06) were elaborated by sol–gel method. Structural investigation revealed co-existence of tetragonal (P4mm) and orthorhombic (Pmm2) symmetries at room temperature for the undoped ceramic, while only a tetragonal structure (P4mm) was observed for the doped ceramics. Dielectric measurements indicate a dielectric relaxation process at high temperatures which is essentially related to the hopping of oxygen vacancies \({\text{V}}_{\ddot{O}}\). Furthermore, a down shifting of the Curie temperature (TC) with increasing Sn4+ doping rate has been revealed. The temperature profiles of the Raman spectra unveiled the existence of polar nanoregions above the Curie temperature in all ceramics. The ferroelectric properties were found to be related to the microstructure. Electrocaloric effect was investigated in this system that revealed an electrocaloric responsivity of 0.225 × 10−6 K m/V for the composition with x = 0.04 Sn doping, where other remarkable physical properties were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.E. Cross, Lead-free at last. Nature 432, 24–25 (2004). https://doi.org/10.1038/nature03142

    Article  Google Scholar 

  2. C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang, K. Il Park, J. Ryu, H. Sohn, Y.C. Chung, K.J. Lee, Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6

    Article  Google Scholar 

  3. C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.T. Hwang, B. Joung, S.G. Kim, H.J. Shin, I.S. Kang, J. Ryu, K.J. Lee, Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. (2017). https://doi.org/10.1063/1.4976803

    Google Scholar 

  4. Y. Zhang, H.J. Sun, W. Chen, Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity. J. Alloys Compd. 694, 745–751 (2017). https://doi.org/10.1016/j.jallcom.2016.10.061

    Article  Google Scholar 

  5. Y. Zhang, W. Zhu, C.K. Jeong, H. Sun, G. Yang, W. Chen, Q. Wang, A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502–32507 (2017). https://doi.org/10.1039/c7ra05605b

    Article  Google Scholar 

  6. H. Sun, Y. Zhang, X. Liu, Y. Liu, S. Guo, W. Chen, Effects of cobalt and sintering temperature on electrical properties of Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 25, 3962–3966 (2014). https://doi.org/10.1007/s10854-014-2114-9

    Google Scholar 

  7. Y. Li, K.S. Moon, C.P. Wong, Electronics without lead. Science 308, 1419–1420 (2005). https://doi.org/10.1126/science.1110168

    Article  Google Scholar 

  8. P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009). https://doi.org/10.1007/s10853-009-3643-0

    Article  Google Scholar 

  9. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Google Scholar 

  10. G. Singh, V.S. Tiwari, P.K. Gupta, Electro-caloric effect in (Ba1−xCax)(Zr0.05Ti0.95)O3: a lead-free ferroelectric material. Appl. Phys. Lett. 202903, 5–9 (2014). https://doi.org/10.1063/1.4829635

    Google Scholar 

  11. J.H. Jeon, Y.D. Hahn, H.D. Kim, Microstructure and dielectric properties of barium-strontium titanate with a functionally graded structure. J. Eur. Ceram. Soc. 21, 1653–1656 (2001). https://doi.org/10.1016/S0955-2219(01)00085-1

    Article  Google Scholar 

  12. Z. Yan, Recent developments related to multifunctional ferroelectric for room-temperature applications. Sci. China Technol. Sci. 59, 513–514 (2016). https://doi.org/10.1007/s11431-016-6008-3

    Article  Google Scholar 

  13. H. Kaddoussi, Y. Gagou, A. Lahmar, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−xSnxO3 ceramics solid solution. J. Mater. Sci. 51, 3454–3462 (2016). https://doi.org/10.1007/s10853-015-9663-z

    Article  Google Scholar 

  14. H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1−xSnxO3 (x = 0, x = 0.075) ceramics. Solid State Commun. 201, 64–67 (2015). https://doi.org/10.1016/j.ssc.2014.10.003

    Article  Google Scholar 

  15. S. Patel, P. Sharma, R. Vaish, Enhanced electrocaloric effect in Ba0.85Ca0.15Zr0.1Ti0.9−xSnxO3 ferroelectric ceramics. Phase Transit. 89, 1062–1073 (2016). https://doi.org/10.1080/01411594.2016.1144752

    Article  Google Scholar 

  16. Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, Z. Yang, Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci. 27, 5047–5058 (2016). https://doi.org/10.1007/s10854-016-4392-x

    Google Scholar 

  17. M. Li, X. Tang, S. Zeng, Y. Jiang, Q. Liu, T. Zhang, W. Li, Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics Ming-Ding. J. Mater. 4, 194–201 (2018). https://doi.org/10.1016/j.jmat.2018.03.001

    Google Scholar 

  18. M.D. Glinchuk, E.A. Eliseev, G. Li, J. Zeng, S.V. Kalinin, A.N. Morozovska, Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure. Phys. Rev. 094102, 1–8 (2018). https://doi.org/10.1103/PhysRevB.98.094102

    Google Scholar 

  19. B.S. Kang, S.K. Choi, Dielectric relaxation in Pb0.9La0.1TiO3 ceramics in the temperature range of 400–700°C. Appl. Phys. Lett. 80, 103–105 (2002). https://doi.org/10.1063/1.1430263

    Article  Google Scholar 

  20. S. Rani, N. Ahlawat, R. Punia, M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti3.95Zn0.05O12 ceramic. Ceram. Int. 44, 5996–6001 (2018). https://doi.org/10.1016/j.ceramint.2017.12.187

    Article  Google Scholar 

  21. C. Ang, Z. Yu, L. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction. Phys. Rev. B 62, 228–236 (2000). https://doi.org/10.1103/physrevb.62.228

    Article  Google Scholar 

  22. I. Coondoo, N. Panwar, R. Vidyasagar, A.L. Kholkin, Defect chemistry and relaxation processes: effect of an amphoteric substituent in lead-free BCZT ceramics. Phys. Chem. Chem. Phys. 18, 31184–31201 (2016). https://doi.org/10.1039/c6cp06244j

    Article  Google Scholar 

  23. K.S. Srikanth, S. Patel, R. Vaish, Functional cementitious composites for pyroelectric applications. J. Electron. Mater. 47, 2378–2385 (2018). https://doi.org/10.1007/s11664-018-6071-6

    Article  Google Scholar 

  24. Y. Cui, X. Liu, M. Jiang, X. Zhao, X. Shan, W. Li, C. Yuan, C. Zhou, Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-CeO2 ceramics with high piezoelectric coefficient obtained by low-temperature sintering. Ceram. Int. 38, 4761–4764 (2012). https://doi.org/10.1016/j.ceramint.2012.02.063

    Article  Google Scholar 

  25. N. Baskaran, H. Chang, Effect of Sn doping on the phase transformation properties of ferroelectric BaTiO3. J. Mater. Sci.: 12, 527–531 (2001). https://doi.org/10.1023/A:1012453526652

    Google Scholar 

  26. R. Stumpe, D. Wagner, D. Bäuerle, Influence of bulk and interface properties on the electric transport in ABO3 perovskites. Phys. Status Solidi 75, 143–154 (1983). https://doi.org/10.1002/pssa.2210750116

    Article  Google Scholar 

  27. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Space-charge relaxation in perovskites. Phys. Rev. B 49, 7868–7873 (1994). https://doi.org/10.1103/PhysRevB.49.7868

    Article  Google Scholar 

  28. Z. Yu, C. Ang, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, Dielectric properties of Bi doped SrTiO3 ceramics in the temperature range 500–800 K. J. Appl. Phys. 83, 4874–4877 (1998). https://doi.org/10.1063/1.367286

    Article  Google Scholar 

  29. S.I. Raevskaya, A.A. Gusev, V.P. Isupov, S.P. Kubrin, I.P. Raevski, V.V. Titov, H. Chen, The effect of mechanical activation on dielectric properties of ceramic ferroelectrics-relaxors PbMg1/3Nb2/3O3 and PbFe1/2Ta1/2O3. Ferroelectrics (2018). https://doi.org/10.1080/00150193.2018.1432921

    Google Scholar 

  30. M. Kuwabara, K. Goda, K. Oshima, Coexistence of normal and diffuse ferroelectric-paraelectric phase transitions in (Pb, La)TiO3 ceramics. Phys. Rev. B 42, 10012–10015 (1990). https://doi.org/10.1103/PhysRevB.42.10012

    Article  Google Scholar 

  31. I.P. Raevskii, V.V. Eremkin, V.G. Smotrakov, M.A. Malitskaya, S.A. Bogatina, L.A. Shilkina, Growth and study of PbFe1/2Ta1/2O3 single crystals. Crystallogr. Rep. 47, 1007–1011 (2002). https://doi.org/10.1134/1.1523518

    Article  Google Scholar 

  32. M. Puri, S. Bahel, I.P. Raevski, S.B. Narang, Dielectric and impedance studies of (Pb1−xCax)(Fe0.5Nb0.5)O3 dielectric ceramics. J. Mater. Sci. 27, 1077–1086 (2016). https://doi.org/10.1007/s10854-015-3854-x

    Google Scholar 

  33. I.P. Raevski, A.A. Gusev, V.P. Isupov, S.I. Raevskaya, V.V. Titov, H. Chen, Control of the degree of compositional ordering of Pb2YbMO6(M–Nb, Ta) perovskites by means of mechanical activation. Ferroelectrics 525, 54–63 (2018). https://doi.org/10.1080/00150193.2018.1432928

    Article  Google Scholar 

  34. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕2Nb1∕2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J. Appl. Phys. 97, 084108 (2005). https://doi.org/10.1063/1.1870100

    Article  Google Scholar 

  35. B. Fang, X. Liu, X. Li, J. Ding, X. Zhao, Temperature-dependent Raman spectra and electrical properties of 0.69Pb(Mg1/3Nb2/3)O3–0.31PbTiO3 single crystals. Appl. Phys. A 122, 1–9 (2016). https://doi.org/10.1007/s00339-016-0340-0

    Google Scholar 

  36. G. Pezzotti, Raman spectroscopy of piezoelectrics. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4803740

    Google Scholar 

  37. R. Zhu, L. Yang, B. Fang, J. Ding, X. Zhao, H. Luo, Ferroelectric phase transitions of the 0.32PIN-0.345PMN-0.335PT single crystals studied by temperature-dependent Raman spectroscopy, dielectric and ferroelectric performance. Phase Transit. 90, 500–508 (2017). https://doi.org/10.1080/01411594.2016.1227987

    Article  Google Scholar 

  38. U.D. Venkateswaran, V.M. Naik, High-pressure Raman studies of polycrystalline. Phys. Rev. B 58, 14256–14260 (1998). https://doi.org/10.1103/physrevb.58.14256

    Article  Google Scholar 

  39. M. Srivastava, B. Kumar, R. Prasad, N. Kumari, S.N. Prasad, Spectral studies of some transition metal chelates with thiolactic anilide and thiolactic-p-toluidide, Part-II. Asian J. Chem. 11, 1501–1504 (1999). https://doi.org/10.1002/jrs

    Google Scholar 

  40. C.J. Xiao, Z.H. Chi, W.W. Zhang, F.Y. Li, S.M. Feng, C.Q. Jin, X.H. Wang, X.Y. Deng, L.T. Li, The phase transitions and ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering. J. Phys. Chem. Solids 68, 311–314 (2007). https://doi.org/10.1016/j.jpcs.2006.11.014

    Article  Google Scholar 

  41. G. Singh, V. Sathe, V.S. Tiwari, Investigation of orthorhombic-to-tetragonal structural phase transition (Ba1−xCax)(Zr0.05Ti0.95)O3 ferroelectric ceramics using micro-Raman scattering. J. Appl. Phys. 115, 044103 (2014). https://doi.org/10.1063/1.4863303

    Article  Google Scholar 

  42. S. Liu, L. Zhang, J. Wang, X. Shi, Y. Zhao, D. Zhang, Rapid stability of ferroelectric polarization in the Ca, Ce hybrid doped BaTiO3 ceramics. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep38354

    Article  Google Scholar 

  43. G. Ramesh, M.S. Ramachandra Rao, V. Sivasubramanian, V. Subramanian, Electrocaloric effect in (1−X)PIN-xPT relaxor ferroelectrics. J. Alloys Compd. 663, 444–448 (2016). https://doi.org/10.1016/j.jallcom.2015.11.028

    Article  Google Scholar 

  44. S. Chihaoui, H. Chaker, C. Chaker, H. Khemakhem, X-ray diffraction, dielectric and Raman studies of the Ba1−xNaxTi1−x(Nb1−ySby)xO3 ceramics. Ceram. Int. 43, 8938–8943 (2017). https://doi.org/10.1016/j.ceramint.2017.04.032

    Article  Google Scholar 

  45. S. Praharaj, D. Rout, S. Anwar, V. Subramanian, Polar nano regions in lead free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 relaxors: an impedance spectroscopic study. J. Alloys Compd. 706, 502–510 (2017). https://doi.org/10.1016/j.jallcom.2017.02.257

    Article  Google Scholar 

  46. H. Orihara, S. Hashimoto, Y. Ishibashi, A theory of D-E hysteresis loop based on the Avrami model. J. Phys. Soc. Jpn. 63, 1031–1035 (1994). https://doi.org/10.1143/jpsj.63.1031

    Article  Google Scholar 

  47. G. Arlt, D. Hennings, G. De With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985). https://doi.org/10.1063/1.336051

    Article  Google Scholar 

  48. N. Buatip, N. Promsawat, N. Pisitpipathsin, O. Namsar, P. Pawasri, K. Phabsimma, S.T. Rattanachan, P. Janphuang, S. Projprapai, N. Promsawat, N. Pisitpipathsin, O. Namsar, P. Pawasri, Investigation on electrical properties of BCZT ferroelectric ceramics prepared at various sintering conditions ceramics prepared at various sintering conditions. Integr. Ferroelectr. 187, 45–52 (2018). https://doi.org/10.1080/10584587.2018.1445395

    Article  Google Scholar 

  49. G. Singh, I. Bhaumik, S. Ganesamoorthy, R. Bhatt, A.K. Karnal, Electro-caloric effect in 0.45BaZr0.2Ti0.8O3-0.55Ba0.7Ca0.3TiO3 single crystal. Appl. Phys. Lett. 082902, 1–5 (2013). https://doi.org/10.1063/1.4793213

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of CNRST Priority Program PPR 15/2015 and the European Union’s Horizon 2020 research and innovation program ENGIMA under the Marie Skłodowska-Curie Grant Agreement No 778072. I.R. acknowledges the support from the Ministry of Education and Science of the Russian Federation via the Project 3.1649.2017/4.6. B.R. and Z.K. acknowledge support from Slovenian Research Agency Project J1-9147 and Program P1-0125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gagou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkhadir, S., Neqali, A., Amjoud, M. et al. Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1−xSnx)O3 ceramics elaborated by sol–gel method. J Mater Sci: Mater Electron 30, 14099–14111 (2019). https://doi.org/10.1007/s10854-019-01776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01776-1

Navigation