Skip to main content
Log in

Effect of graphene infusion on morphology and performance of natural rubber latex/graphene composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays developments of most flexible electronic devices have significantly increased due to high demand on healthcare applications of daily life activities. Given these development factors, the production of nanoparticles-polymer composite improves the functionality of stretchable or improves interfacial adherence between the matrix and nanoparticles. In this research work, graphene used as functional filler materials into the polymer (natural rubber latex) matrices is presented. The surface morphology of pure natural rubber latex (NRL) and natural rubber latex/graphene (NRL/G) composite were observed by using Scanning electron microscopy (SEM). The X-ray photoelectron spectroscopy (XPS) was recorded to investigate the elements and functional groups present in the graphene and NRL and in the NRL/G composite. Furthermore, the mechanical and conductivity properties of the pure NRL and NRL/G composite are studied. The mechanical property and conductivity test were performed by a universal testing machine and two-point probes measurement respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.R.G. Treloar, The physics of rubber elasticity, 3rd edn. (Clarendon Press, Oxford, 1975), p. 3

    Google Scholar 

  2. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  Google Scholar 

  5. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    Article  Google Scholar 

  6. H. Kim, S. Kobayashi, M.A. AbdurRahim, M.J. Zhang, A. Khusainova, M.A. Hillmyer, A.A. Abdala, C.W. Macosko, Polymer 52, 1837–1846 (2011)

    Article  Google Scholar 

  7. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, ACS Nano 3, 3884–3890 (2009)

    Article  Google Scholar 

  8. A. Bakour, M. Baitoul, O. Bajjou, F. Massuyeau, E. Faulques, Mater. Res. Express 4, 025031 (2017)

    Article  Google Scholar 

  9. M. Goumri, J.W. Venturini, A. Bakour, M. Khenfouch, M. Baitoul, Appl. Phys. A 122, 212 (2016)

    Article  Google Scholar 

  10. Y. Seekaew, O. Arayawut, K. Timsorn, C. Wongchoosuk, Carbon-based nanofillers and their rubber nanocomposites, in Carbon nano-objects, ed. by S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, H.J. Maria (Elsevier, Amsterdam, 2019), pp. 259–283

    Google Scholar 

  11. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T. Shen Wee, J. Phys. Chem. C 112, 10637–10640 (2008)

    Article  Google Scholar 

  12. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  13. S. Toki, B.S. Hsiao, Macromolecules 36, 5915–5917 (2003)

    Article  Google Scholar 

  14. C.A. Rezende, F.C. Bragança, T.R. Doi, L.-T. Lee, F. Galembeck, F. Boué, Polymer 51, 3644–3652 (2010)

    Article  Google Scholar 

  15. D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Appl. Surf. Sci. 273, 484–490 (2013)

    Article  Google Scholar 

  16. J. Wang, F. Ma, M. Sun, RSC Adv. 7, 16801–16822 (2017)

    Article  Google Scholar 

  17. Y. Wang, Chem. Mater. 2, 557–563 (1990)

    Article  Google Scholar 

  18. F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    Article  Google Scholar 

  19. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Nano Lett. 9, 1597 (2009)

    Google Scholar 

  20. G. Beamson, The Scienta ESCA 300 Database (John Wiley and Sons Ltd, New Jersey, 1992)

    Google Scholar 

  21. N. George, J. Chandra, A. Mathiazhagan, R. Joseph, Compos. Sci. Technol. 116, 33–40 (2015)

    Article  Google Scholar 

  22. S.H. Jin, Y.-B. Park, K.H. Yoon, Compos. Sci. Technol. 67, 3434–3441 (2007)

    Article  Google Scholar 

  23. S.S. Sarkawi, W.K. Dierkes, J.W.M. Noordermeer, Rubber Chem. Technol. 88, 359–372 (2015)

    Article  Google Scholar 

  24. H. Kang, Y. Tang, L. Yao, F. Yang, Q. Fang, D. Hui, Compos. Part B 112, 1–7 (2017)

    Article  Google Scholar 

  25. B. Dong, S. Wu, L. Zhang, Y. Wu, Ind. Eng. Chem. Res. 55, 4919–4929 (2016)

    Article  Google Scholar 

  26. Y. Zhan, M. Lavorgna, G. Buonocore, H. Xia, J. Mater. Chem. 22, 10464–10468 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by a Science Fund grant from the Ministry of Energy, Science, Technology, Environment and Climate Change (03-01-03-SF1133) and Research University grant from University of Malaya (RU004-2017). Authors are also thankful to Dr. Azira Abd Aziz From Malaysia Rubber Board for supplying the latex resources to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlinda Ab Rahman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Tong, G.B., Kamaruddin, N.H. et al. Effect of graphene infusion on morphology and performance of natural rubber latex/graphene composites. J Mater Sci: Mater Electron 30, 12888–12894 (2019). https://doi.org/10.1007/s10854-019-01650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01650-0

Navigation