Skip to main content
Log in

Synthesis of photoluminescent β-Ga2O3 nanostructures using electrospinning method, and control of length-diameter ratio by calcination heating rates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanofiber precursors of PVP-Ga(NO3)3 were synthesized through the electrospinning technique, and monoclinic β-Ga2O3 patterns were later obtained through the calcination method. During the annealing process, the nanofibers’ pores decreased, and their lengths were uniform up to several micrometers due to the surface-to-core extension that comprises the crystallization through Ostwald ripening process. Synthesis on the structure and morphology of materials were investigated using scanning and transmission electron microscopy equipped with an energy dispersive spectrometer, X-ray diffraction, Raman and Fourier-transform infrared (FTIR) spectroscopies. The β-Ga2O3 optical properties disclosed very broad and intense photoluminescence emission spectrum in the blue region of the wavelength, whose driving force was the presence of oxygen vacancies in the structures. Two types of Ga3+ ions (GaO6 octahedral and GaO4 tetrahedral chains) were demonstrated to come from different vibrations of Ga–O bonds in the Raman and FTIR spectra. And Ga3+–CO adducts formed on coordinatively Ga3+ ion located at edges and corners of β-Ga2O3 crystallites. Thus, successful results of this work included the control of length-diameter ratio by calcination heating rates, as well as the broad blue emission band, representing a strong potential of β-Ga2O3 materials in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Wang, Z. Hou, Z. Quan, H. Lian, P. Yang, J. Lian, Mater. Res. Bull. 44, 1978–1983 (2009)

    Article  CAS  Google Scholar 

  2. H.F. Greer, F.J. Yu, W.Z. Zhou, Sci. China 54, 1867–1876 (2011)

    Article  CAS  Google Scholar 

  3. T. Zhou, P. Chen, S. Hu, Y. Yan, W. Pan, H. Li, Ceram. Int. 42, 6467–6474 (2016)

    Article  CAS  Google Scholar 

  4. J. Zhao, W. Zhang, E. Xie, Z. Ma, A. Zhao, Z. Liu, Appl. Surf. Sci. 257, 4968–4972 (2011)

    Article  CAS  Google Scholar 

  5. J.G. Zhao, Z.X. Zhang, Z.W. Ma, H.G. Duan, X.S. Guo, E.Q. Xie, Chin. Phys. Lett. 25, 3787–3789 (2008)

    Article  CAS  Google Scholar 

  6. C. Han, W. Mao, K. Bao, H. Xie, Z. Jia, L. Ye, Int. J. Hydrog. Energy 42, 19913–19919 (2017)

    Article  CAS  Google Scholar 

  7. Y. Yoon, K.I. Han, B.H. Kim, I.G. Lee, Y. Kim, J.P. Kim, W.S. Hwang, Thin Solid Films 645, 358–362 (2018)

    Article  CAS  Google Scholar 

  8. B. Fernandes, M. Hegde, P.C. Stanish, Z.L. Mišković, P.V. Radovanovic, Chem. Phys. Lett. 684, 135–140 (2017)

    Article  CAS  Google Scholar 

  9. Y. Zhang, J. Yang, Q. Li, X. Cao, J. Cryst. Growth 308, 180–184 (2007)

    Article  CAS  Google Scholar 

  10. H. Chen, G.D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Sens. Actuators, B 240, 689–696 (2017)

    Article  CAS  Google Scholar 

  11. L. Cui, H. Wang, B. Xin, G. Mao, Appl. Phys. A 123, 634 (2017)

    Article  Google Scholar 

  12. D. Calestani, A.B. Alabi, N. Coppedè, M. Villani, L. Lazarinni, F. Fabbri, G. Salviati, A. Zappettini, J. Cryst. Growth 457, 255–261 (2017)

    Article  CAS  Google Scholar 

  13. S.J. Park, N.A.M. Barakat, K.U. Jeong, H.Y. Kim, Polym. Int. 60, 322–326 (2011)

    Article  CAS  Google Scholar 

  14. C. Sun, J. Deng, L. Kong, L. Chen, Z. Chen, Y. Cao, H. Zhang, X. Wang, in 5th Annual International Conference on Materials Science and Engineering, vol. 275 (2017), p. 012046

  15. J. Zhao, W. Zhang, E. Xie, Z. Liu, J. Feng, Z. Liu, Mater. Sci. Eng., B 176, 932–936 (2011)

    Article  CAS  Google Scholar 

  16. G. Sinha, S. Chaudhuri, Mater. Chem. Phys. 114, 644–649 (2009)

    Article  CAS  Google Scholar 

  17. H.M. Lam, M.H. Hong, C.L. Gan, T.C. Chong, in Fifth International Symposium on Laser Precision Microfabrication, vol. 5662 (2004), pp. 62–66

  18. T. Zhang, J. Lin, X. Zhang, Y. Huang, X. Xu, Y. Xue, J. Zou, C. Tang, J. Lumin. 140, 30–37 (2013)

    Article  CAS  Google Scholar 

  19. Y. Cheng, J. Chen, K. Yang, Y. Wang, Y. Yin, H. Liang, G. Du, J. Vac. Sci. Technol., B 32, 03D119 (2014)

    Article  Google Scholar 

  20. S. Hinrichsen, H. Broda, C. Gradert, L. Soencksen, F. Tuczek, Annu. Rep. Prog. Chem. Sec. A 108, 17–47 (2012)

    Article  CAS  Google Scholar 

  21. B.M. Flöser, F. Tuczek, Coord. Chem. Rev. 345, 263–280 (2017)

    Article  Google Scholar 

  22. S. Kumar, V. Kumar, T. Singh, A. Hähnel, R. Singh, J. Nanopart. Res. 16, 2189 (2014)

    Article  Google Scholar 

  23. G. Pozina, M. Forsberg, M.A. Kaliteevski, C. Hemmingsson, Sci. Rep. 7, 42132 (2017)

    Article  CAS  Google Scholar 

  24. J.M. Jeong, Y.J. Kwon, H.Y. Cho, H.G. Na, H.W. Kim, J. Ceram. Process. Res. 15, 428–432 (2014)

    Google Scholar 

  25. C. Liu, Y. Berencén, J. Yang, Y. Wei, M. Wang, Y. Yuan, C. Xu, Y. Xie, X. Li, S. Zhou, Semicond. Sci. Technol. 33, 095022 (2018)

    Article  Google Scholar 

  26. A. Khan, S.N. Khan, W.M. Jadwisienczak, M.E. Kordesch, Sci. Adv. Mater. 1, 236–240 (2009)

    Article  CAS  Google Scholar 

  27. I. Nowak, M. Misiewicz, M. Ziolek, A. Kubacka, V.C. Coberán, B. Sulikowski, Appl. Catal. A 325, 328–335 (2007)

    Article  CAS  Google Scholar 

  28. S. Kumar, C. Tessarek, S. Christiansen, R. Singh, J. Alloys Compd. 587, 812–818 (2014)

    Article  CAS  Google Scholar 

  29. Y. Quan, D. Fang, X. Zhang, S. Liu, K. Huang, Mater. Chem. Phys. 121, 142–146 (2010)

    Article  CAS  Google Scholar 

  30. K. Girija, S. Thirumalairajan, G.S. Avadhani, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Res. Bull. 48, 2296–2303 (2013)

    Article  CAS  Google Scholar 

  31. H.J. Bae, T.H. Yoo, Y. Yoon, I.G. Lee, J.P. Kim, B.J. Cho, W.S. Hwang, Nanomaterials 8, 594 (2018)

    Article  Google Scholar 

  32. M.R. Delgado, C.O. Areán, Mater. Lett. 57, 2292 (2003)

    Article  Google Scholar 

  33. C.O. Areán, A.L. Bellan, M.P. Mentruit, M.R. Delgado, G.T. Palomino, Microporous Mesoporous Mater. 40, 35 (2000)

    Article  Google Scholar 

  34. H. Xiao, H. Pei, W. Hu, B. Jiang, Y. Qiu, Mater. Lett. 64, 2399–2402 (2010)

    Article  CAS  Google Scholar 

  35. A.V. Rodrigues, M.O. Orlandi, Ceram. Int. 45, 5023–5029 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dr. Marcelo O. Orlandi for the lab space. TEM and FEG-SEM facilities were provided by the LMA-IQ-UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Varella Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.V., Sabino, N.L. Synthesis of photoluminescent β-Ga2O3 nanostructures using electrospinning method, and control of length-diameter ratio by calcination heating rates. J Mater Sci: Mater Electron 30, 16910–16916 (2019). https://doi.org/10.1007/s10854-019-01631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01631-3

Navigation