Skip to main content
Log in

Rapid low temperature sintering in air of copper submicron particles with synergistic surface-activation and anti-oxidative protection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The technology to sinter copper inks in air is beneficial for the applications in flexible printed electronics. However, copper based ink could hardly produce conductive copper patterns when sintered in air, because copper is easily oxidized. In this study, a convenient fabrication process for conductive copper films with a simple heat treatment on hotplate in air was successfully developed. The ink was prepared by mixing copper submicron particles with formic acid and an amino-alcohol. The copper oxide on the surface of untreated copper submicron particles was converted to decomposable copper formate. More importantly, the copper submicron particles could be activated by the chemisorbed HCOOH to sinter at low temperatures. 3-Dimethylamino-1,2-propanediol (DMAPD) was introduced to protect copper from oxidation when sintered in air. In addition, DMAPD could promote the decomposition of copper formate by forming copper–amine complex. A resistivity of 54 ± 2 μΩ cm was obtained after sintered at 200 °C for 50 s (63 ± 4 μΩ cm for only 10 s). This simple, convenient and rapid sintering of submicron copper inks in air provides an alternative fabrication method of copper patterns in printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials: a review. Circ. World 38, 193 (2012)

    Article  CAS  Google Scholar 

  2. W. Wu, Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342 (2017)

    Article  CAS  Google Scholar 

  3. A. Kamyshny, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011)

    Article  CAS  Google Scholar 

  4. Y. Zhan, Y. Mei, L. Zheng, Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2, 1220 (2014)

    Article  CAS  Google Scholar 

  5. A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Printed paper photovoltaic cells. Adv. Energy Mater. 1, 1018 (2011)

    Article  Google Scholar 

  6. C.Y. Lai, C.F. Cheong, J.S. Mandeep, H.B. Abdullah, N. Amin, K.W. Lai, Synthesis and characterization of silver nanoparticles and silver inks: review on the past and recent technology roadmaps. J. Mater. Eng. Perform. 23, 3541 (2014)

    Article  CAS  Google Scholar 

  7. R. Singh, E. Singh, H.S. Nalwa, Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 7, 48597 (2017)

    Article  CAS  Google Scholar 

  8. K. Woo, D. Kim, J.S. Kim, S. Lim, J. Moon, Ink-jet printing of Cu–Ag-based highly conductive tracks on a transparent substrate. Langmuir ACS J. Surf. Colloids 25, 429 (2009)

    Article  CAS  Google Scholar 

  9. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumannbd, U.S. Schubert, Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19, 3384 (2009)

    Article  CAS  Google Scholar 

  10. W. Li, S. Shu, J. Jiu, S. Nagao, K. Suganuma, Self-reducible copper inks composed of copper–amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate. J. Mater. Chem. C 4, 8802 (2016)

    Article  CAS  Google Scholar 

  11. T. Sugiyama, K. Mai, R. Arakawa, H. Kawasaki, Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate. J. Mater. Sci.: Mater. Electron. 27, 7540 (2016)

    CAS  Google Scholar 

  12. A.K. Venkata, R.V.K. Rao, P.S. Karthik, S.P. Singh, Copper conductive inks: synthesis and utilization in flexible electronics. RSC Adv. 46, 63985 (2015)

    Google Scholar 

  13. N.N. Jason, S. Wei, W. Cheng, Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces. 7, 16760 (2015)

    Article  CAS  Google Scholar 

  14. S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS Appl. Mater. Interfaces. 7, 5674 (2015)

    Article  CAS  Google Scholar 

  15. S. Magdassi, M. Grouchko, A. Kamyshny, Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials 3, 4626 (2010)

    Article  CAS  Google Scholar 

  16. M. Grouchko, A. Kamyshny, S. Magdassi, Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. J. Mater. Chem. 19, 3057 (2009)

    Article  CAS  Google Scholar 

  17. C.-J. Wu, S.-L. Cheng, Y.-J. Sheng, H.-K. Tsao, Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Adv. 5, 53275 (2015)

    Article  CAS  Google Scholar 

  18. J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. J. Mater. Sci.: Mater. Electron. 27, 13280 (2016)

    CAS  Google Scholar 

  19. Y.-T. Kwon, Y.-I. Lee, S. Kim, K.-J. Lee, Y.-H. Choa, Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering. Appl. Surf. Sci. 396, 1239 (2016)

    Article  Google Scholar 

  20. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202 (2007)

    Article  Google Scholar 

  21. S. Back, B. Kang, Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer. Opt. Lasers Eng. 101, 78 (2017)

    Article  Google Scholar 

  22. S. Cho, Z. Yin, Y.-K. Ahn, Y. Piao, J. Yoo, Y.S. Kim, Self-reducible copper ion complex ink for air sinterable conductive electrodes. J. Mater. Chem. C 4, 10740 (2016)

    Article  CAS  Google Scholar 

  23. A. Yabuki, Y. Tachibana, I.W. Fathona, Synthesis of copper conductive film by low-temperature thermal decomposition of coppereaminediol complexes under an air atmosphere. Mater. Chem. Phys. 148, 299 (2014)

    Article  CAS  Google Scholar 

  24. T. Yonezawa, H. Tsukamoto, Y. Yong, M.T. Nguyen, M. Matsubara, Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+-alkanolamine metallacycle compounds for electrically conductive layer formation. RSC Adv. 6, 12048 (2016)

    Article  CAS  Google Scholar 

  25. Y. Li, T. Qi, M. Chen, F. Xiao, Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures. J. Mater. Sci.: Mater. Electron. 27, 11432 (2016)

    CAS  Google Scholar 

  26. S.-J. Joo, H.-J. Hwang, H.-S. Kim, Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology 25, 265601 (2014)

    Article  Google Scholar 

  27. M. Kanzaki, Y. Kawaguchi, H. Kawasaki, Fabrication of conductive copper films on flexible polymer substrates by low-temperature sintering of composite Cu ink in air. ACS Appl. Mater. Interfaces. 9, 20852 (2017)

    Article  CAS  Google Scholar 

  28. Y. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J. Mater. Chem. C 3, 5890 (2015)

    Article  CAS  Google Scholar 

  29. Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, C.S. Tan, Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects. Appl. Phys. Lett. 108, 263103 (2016)

    Article  Google Scholar 

  30. W. Li, L. Li, Y. Gao, D. Hu, C.-F. Li, H. Zhang, J. Jiu, S. Nagao, K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: microstructure, resistivity, oxidation resistance, and long-term stability. J. Alloy. Compd. 732, 240 (2018)

    Article  CAS  Google Scholar 

  31. P. Buffat, J. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976)

    Article  CAS  Google Scholar 

  32. T. Qi, Z. Zhang, Y. Li, J. Wang, F. Xiao, Low temperature self-reducible copper hydroxide amino-alcohol complex catalyzed by formic acid for conductive copper films. J. Mater. Chem. C 6, 11320 (2018)

    Article  CAS  Google Scholar 

  33. K. Hirota, K. Kuwata, Y. Nakai, Infrared studies of formic acid, chemisorbed on copper, nickel and zinc. Bull. Chem. Soc. Jpn. 31, 861 (1958)

    Article  CAS  Google Scholar 

  34. E. Iglesia, M. Boudart, Decomposition of formic acid on copper, nickel, and copper-nickel alloys. J. Catal. 81, 214 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science and Technology Major Project of China with Contract No. 2013ZX02505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xiao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, T., Wang, X., Yang, J. et al. Rapid low temperature sintering in air of copper submicron particles with synergistic surface-activation and anti-oxidative protection. J Mater Sci: Mater Electron 30, 12669–12678 (2019). https://doi.org/10.1007/s10854-019-01630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01630-4

Navigation