Skip to main content
Log in

Thermoelectric properties of BiSbTe/graphene nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, BiSbTe based graphene composites with different vol% of graphene were processed by the pressure assisted high frequency induction heated sintering. The exfoliated graphene was uniformly dispersed in the BiSbTe powder through magnetic stirring and ball milling. The pristine BiSbTe and composites powders were consolidated by the high frequency induction heated sintering. Thermoelectric properties of the developed bulks were investigated in the temperature range 300–500 K. The results suggest that ball milling as well as incorporation of graphene substantially changes the transport properties of nanostructured BiSbTe composites from pristine bulk. The electrical conductivity of the composites degraded somewhat gradually with the addition of graphene. The effective thermal conductivity reduces by incorporation of graphene, which is attributed to increased phonon scattering by the enormous nanostructured phase boundaries and graphene. The enhanced Seebeck coefficient accompanied by the reduction in thermal conductivity leads to improved figure of merit up to ~ 1.2 at ~ 375 K for 0.5 vol% graphene/BiSbTe composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015)

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Article  CAS  Google Scholar 

  3. J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)

    Article  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  5. Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, G. Xu, Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition. J. Mater. Chem. A 2, 8512–8516 (2014)

    Article  CAS  Google Scholar 

  6. Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions. J. Mater. Chem. C 3, 7045–7052 (2015)

    Article  CAS  Google Scholar 

  7. D. Suh, S. Lee, H. Mun, S.H. Park, K.H. Lee, S.W. Kim, J.Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)

    Article  CAS  Google Scholar 

  8. W.H. Shin, K. Ahn, M. Jeong, J.S. Yoon, J.M. Song, S. Lee, W.S. Seo, Y.S. Lim, Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. J. Alloys Compd. 718, 342–348 (2017)

    Article  CAS  Google Scholar 

  9. U.G. Hwang, K. Kim, W. Kim, W.H. Shin, W.-S. Seo, Y.S. Lim, Thermoelectric transport properties of interface-controlled p-type bismuth antimony telluride composites by reduced graphene oxide. Electron. Mater. Lett. (2019). https://doi.org/10.1007/s13391-019-00118-x

    Article  Google Scholar 

  10. K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites. Appl. Surf. Sci. 474, 2–8 (2019)

    Article  CAS  Google Scholar 

  11. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  CAS  Google Scholar 

  12. K. Ahmad, W. Pan, H. Wu, High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Adv. 5, 33607–33614 (2015)

    Article  CAS  Google Scholar 

  13. J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe-graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1, 12503–12511 (2013)

    Article  CAS  Google Scholar 

  14. P.-A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, L. Chen, Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017)

    Article  CAS  Google Scholar 

  15. H. Sevinçli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  16. P.-A. Zong, X. Chen, Y. Zhu, Z. Liu, Y. Zeng, L. Chen, Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J. Mater. Chem. A 3, 8643–8649 (2015)

    Article  CAS  Google Scholar 

  17. K. Ahmad, C. Wan, M.A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of BiSbTe-based nanocomposites. J. Electron. Mater. 46, 1348–1357 (2017)

    Article  CAS  Google Scholar 

  18. A. Kaleem, W. Chunlei, Enhanced thermoelectric performance of Bi2 Te3 through uniform dispersion of single wall carbon nanotubes. Nanotechnology 28, 415402 (2017)

    Article  Google Scholar 

  19. K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35, 663–671 (2015)

    Article  CAS  Google Scholar 

  20. L. Xue, Z. Zhang, W. Shen, H. Ma, Y. Zhang, C. Fang, X. Jia, Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis. J. Materiomics 5, 103–110 (2019)

    Article  Google Scholar 

  21. H. Xian, T. Peng, H. Sun, J. Wang, Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. J. Mater. Sci. 50, 4025–4033 (2015)

    Article  CAS  Google Scholar 

  22. H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites. Dalton Trans. 44, 11755–11762 (2015)

    Article  CAS  Google Scholar 

  23. Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Large zT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2, 5785–5790 (2014)

    Article  CAS  Google Scholar 

  24. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)

    Article  CAS  Google Scholar 

  25. C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)

    Article  CAS  Google Scholar 

  26. D. Suh, S. Lee, H. Mun, S.-H. Park, K.H. Lee, S. Wng Kim, J.-Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)

    Article  CAS  Google Scholar 

  27. H. Ju, J. Kim, Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene. J. Alloys Compd. 664, 639–647 (2016)

    Article  CAS  Google Scholar 

  28. J. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013)

    Article  CAS  Google Scholar 

  29. Y. Pan, T.-R. Wei, Q. Cao, J.-F. Li, Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater. Sci. Eng. B 197, 75–81 (2015)

    Article  CAS  Google Scholar 

  30. C. Chen, D.-W. Liu, B.-P. Zhang, J.-F. Li, Enhanced thermoelectric properties obtained by compositional optimization in p-type Bix Sb2−x Te3 fabricated by mechanical alloying and spark plasma sintering. J. Electron. Mater. 40, 942–947 (2011)

    Article  CAS  Google Scholar 

  31. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

    Article  CAS  Google Scholar 

  32. M. Sharafat Hossain, F. Al-Dirini, F.M. Hossain, E. Skafidas, High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015)

    Article  Google Scholar 

  33. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008)

    Article  CAS  Google Scholar 

  34. D.W. Xie, J.T. Xu, G.Q. Liu, Z. Liu, H.Z. Shao, X.J. Tan, J. Jiang, H.C. Jiang, Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies 9, 236 (2016)

    Article  Google Scholar 

  35. I. Barin, Thermochemical data of pure substances, 2nd edn. (VCH, Weinheim, 1993), pp. 1–1739

    Google Scholar 

  36. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 74, 339–343 (2002)

    Article  CAS  Google Scholar 

  37. P. Miranzo, E. García, C. Ramírez, J. González-Julián, M. Belmonte, M. Isabel Osendi, Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 32, 1847–1854 (2012)

    Article  CAS  Google Scholar 

  38. E.L. Corral, H. Wang, J. Garay, Z. Munir, E.V. Barrera, Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J. Eur. Ceram. Soc. 31, 391–400 (2011)

    Article  CAS  Google Scholar 

  39. Q. Huang, L. Gao, Y. Liu, J. Sun, Sintering and thermal properties of multiwalled carbon nanotube–BaTiO3 composites. J. Mater. Chem. 15, 1995–2001 (2005)

    Article  CAS  Google Scholar 

  40. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)

    Article  Google Scholar 

  41. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (11-NAN1913-02). We appreciate help for sintering the samples from Center of Excellence for Research in Engineering Materials (CEREM) at King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaleem Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Wan, C. & Zong, Pa. Thermoelectric properties of BiSbTe/graphene nanocomposites. J Mater Sci: Mater Electron 30, 11923–11930 (2019). https://doi.org/10.1007/s10854-019-01538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01538-z

Navigation