Skip to main content
Log in

Enhanced electrical properties in A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 high temperature piezoelectric ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 ceramics were synthesized by a conventional solid-state reaction process. The structures, piezoelectricity and electrical conduction behaviors were investigated in detail. The Ca0.95(K1/2Ce1/2)0.05Bi2Nb1.99(W2/3Cr1/3)0.01O9 ceramic exhibited best properties with a high d33 (piezoelectric coefficient) of ~ 18.4 pC/N and a high TC (Curie temperature) of ~ 917 °C. In addition, the ceramic displayed an excellent thermal stability performance such that d33 remained 94% of its initial value even after annealing at 900 °C for 2 h. The planar electromechanical coupling factor was observed to increase from 9.00% at room temperature to 15.24% at 600 °C. Furthermore, a high electrical resistivity of 1.16 × 105 Ω cm at 600 °C and a good fatigue property were also achieved with this composition. The Ca0.95(K1/2Ce1/2)0.05Bi2Nb1.99(W2/3Cr1/3)0.01O9 ceramic was found to be a promising candidate for high-temperature piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Araujo, A.P. Cuchiaro, J.D. Mcmillan, L.D. Scott, M.C. Scott, Nat. Mater. 374, 627–629 (1995)

    Google Scholar 

  2. H.X. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, Adv. Mater. 17, 1261–1265 (2005)

    Article  Google Scholar 

  3. H.X. Yan, H. Zhang, M.J. Reece, Appl. Phys. Lett. 87, 651 (2005)

    Google Scholar 

  4. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1995)

    Article  Google Scholar 

  5. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029–1039 (1971)

    Article  Google Scholar 

  6. E.C. Subbarao, J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  Google Scholar 

  7. S. Swartz, W.A. Schulze, J.V. Biggers, Ferroelectrics 38, 765–768 (1981)

    Article  Google Scholar 

  8. H. Chen, F. Fu, J. Zhai, Jpn. J. Appl. Phys. 50, 050207 (2011)

    Article  Google Scholar 

  9. X.X. Tian, S.B. Qu, B. Wang, Sci. China Ser. B 54, 1552–1557 (2011)

    Article  Google Scholar 

  10. X.X. Tian, S.B. Qu, H.L. Du, Y. Li, Z. Xu, Chin. Phys. B 21, 37701–37705 (2012)

    Article  Google Scholar 

  11. C.M. Wang, S.J. Zhang, J.F. Wang, M.L. Zhao, C.L. Wang, Mater. Chem. Phys. 118, 21–24 (2009)

    Article  Google Scholar 

  12. C.M. Wang, J.F. Wang, S.J. Zhang, T.R. Shrout, Phys. Status Solidi RRL 3, 49–51 (2010)

    Article  Google Scholar 

  13. J. Chen, J. Yuan, S.M. Bao, Y.J. Wu, G. Liu, Q. Chen, D.Q. Xiao, J.G. Zhu, Ceram. Int. 43(6), 5002–5006 (2017)

    Article  Google Scholar 

  14. X.X. Zeng, F. Cao, Z.H. Peng, X.H. Xing, Ceram. Int. 44, 3069–3076 (2018)

    Article  Google Scholar 

  15. Z.H. Peng, Q. Che, Y.D. Wang, D.Q. Xin, D.Q. Xiao, J.G. Zhu, Mater. Lett. 107, 14–16 (2013)

    Article  Google Scholar 

  16. X.H. Xing, F. Cao, Z.H. Peng, Y. Xiang, Ceram. Int. 44(14), 17326–17332 (2018)

    Article  Google Scholar 

  17. Z.N. Chen, L.S. Sheng, X.D. Li, P. Zheng et al., Ceram. Int. 45, 6007–6011 (2019)

    Google Scholar 

  18. Z.Y. Shen, H.J. Sun, Y.X. Tang, Y.M. Li, S.J. Zhang, Mater. Res. Bull. 63, 129–133 (2015)

    Article  Google Scholar 

  19. C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li, Scr. Mater. 75, 70–73 (2014)

    Article  Google Scholar 

  20. C.B. Long, H.Q. Fan, M.M. Li, Dalton Trans. 42(10), 3561–3570 (2013)

    Article  Google Scholar 

  21. L. Sun, Q. Chen, D. Wu, J. Wu, J Alloys Compd. 625, 113 (2015)

    Article  Google Scholar 

  22. D.Q. Xin, Q. Chen, J.G. Wu, S.M. Bao, W. Zhang, D.Q. Xiao, J.G. Zhu, J. Electron. Mater. 45(7), 3597–3602 (2016)

    Article  Google Scholar 

  23. C.B. Long, H.Q. Fan, M.M. Li, P.R. Ren, Y. Cai, CrystEngComm 15, 10212–10221 (2013)

    Article  Google Scholar 

  24. H.X. Yan, C. Li, J. Zhou, L. He, Jpn. J. Appl. Phys. 40, 6501 (2014)

    Article  Google Scholar 

  25. C.M. Wang, J. Wang, S. Zhang, T.R. Shrout, J. Appl. Phys. 105, 463 (2009)

    Google Scholar 

  26. Z.H. Peng, Q. Chen, J.G. Wu, X.H. Zhu, D.Q. Xiao, J.G. Zhu, J Alloys Compd. 509(33), 8483–8486 (2011)

    Article  Google Scholar 

  27. G. Liu, D. Wang, C. Wu, J.G. Wu, Q. Chen, J. Am. Ceram. Soc. 102(4), 1794–1804 (2018)

    Article  Google Scholar 

  28. X.X. Tian, S.B. Qu, H. Ma, Z.B. Pei, B.K. Wang, J. Mater. Sci. 27(12), 13309–13313 (2016)

    Google Scholar 

  29. P. Xiao, Y. Guo, M. Tian, Q. Zheng, N. Jiang, X. Wu, Dalton Trans. 44, 17366–17380 (2015)

    Article  Google Scholar 

  30. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, Phys. Rev. B 530, 69–74 (2000)

    Google Scholar 

  31. Q. Wang, H.Q. Fan, C.B. Long, J. Mater. Sci. 25(7), 2961–2968 (2014)

    Google Scholar 

  32. D.Y. Suárez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16(11), 3139–3149 (2011)

    Article  Google Scholar 

  33. Z.H. Peng, Q. Chen, Y. Chen, D.Q. Xiao, J. Zhu, Mater. Res. Bull. 59, 125–130 (2014)

    Article  Google Scholar 

  34. J.G. Hou, Y.F. Qu, R. Vaish, K.B.R. Varma, D. Krsmanovic, R.V. Kumar, J. Am. Ceram. Soc. 93, 1414–1421 (2010)

    Google Scholar 

  35. G. Liu, J. Yuan, R. Nie, L.M. Jiang, Z. Tan, J.G. Zhu, Q. Chen, J Alloys Compd. 697, 380–387 (2017)

    Article  Google Scholar 

  36. S.M. Bao, Z.H. Peng, W.Y. Guang, C.Y. Li, Q. Chen, W. Zhang, D.Q. Xiao, J.G. Zhu, Ferrelectr. 458(1), 200–207 (2014)

    Article  Google Scholar 

  37. Z.H. Peng, X.X. Zeng, X. Yang, F. Cao, J.G. Zhu, Ceram. Int. 43, 1249–1255 (2017)

    Article  Google Scholar 

  38. G. Liu, C. Wu, Y. Chen, D.Y. Liang, B. Wang, J.G. Wu, Q. Chen, Ceram. Int. 44, 5880–5885 (2018)

    Article  Google Scholar 

  39. H.B. Chen, J.W. Zhai, Key Eng. Mater. 512, 1367–1371 (2012)

    Article  Google Scholar 

  40. A. Hussain, M.A. Qaiser, J. Zhang, S.T. Zhang, J. Am. Ceram. Soc. 100, 3522–3529 (2017)

    Article  Google Scholar 

  41. S.Y. Cho, G.P. Choi, S.D. Bu, J. Korean Phys. Soc. 70(10), 934–938 (2017)

    Article  Google Scholar 

  42. T.L. Zhao, C.M. Wang, C.L. Wang, Y.M. Wang, S.X. Dong, Mater. Sci. Eng. B 201, 51–56 (2015)

    Article  Google Scholar 

  43. Z.Y. Zhou, X. Dong, H. Yan, H. Chen, C. Mao, J. Appl. Phys. 100, 2421 (2006)

    Google Scholar 

  44. G. Zhi, G. Zhao, J. Electroceram. 31(1–2), 143–147 (2013)

    Google Scholar 

  45. H. Cheng, J. Appl. Phys. 56(6), 1831–1837 (1984)

    Article  Google Scholar 

  46. W.L. Warren, K. Vanheusden, D. Dimos, J. Am. Ceram. Soc. 79(2), 536–538 (2010)

    Article  Google Scholar 

  47. J. Robertson, C. Chen, W.L. Warren, C.D. Guttleben, Appl. Phys. Lett. 69, 1704–1706 (1996)

    Article  Google Scholar 

  48. I. Coondoo, A.K. Jha, S.K. Agarwal, J. Eur. Ceram. Soc. 27(1), 253–260 (2007)

    Article  Google Scholar 

  49. Y. Tang, Z.Y. Shen, Q. Du et al., J. Eur. Ceram. Soc. 38(16), 5348–5353 (2018)

    Article  Google Scholar 

  50. D.C. Lupascu, U. Rabe, Phys. Rev. Lett. 89(18), 187601 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51302056, 51502067), Key research and development projects of Zhejiang Province (2017C01056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, X., Sheng, L. et al. Enhanced electrical properties in A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 high temperature piezoelectric ceramic. J Mater Sci: Mater Electron 30, 11727–11734 (2019). https://doi.org/10.1007/s10854-019-01534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01534-3

Navigation