Skip to main content

Advertisement

Log in

Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphite-phase carbon nitride (g-C3N4) has a unique semiconductor band structure (band gap width 2.7 eV), excellent chemical stability and non-toxicity, which has potential application in the field of environmental pollution treatment and energy conversion. However, low specific surface area and high recombination photo-generated electrons–holes, which lead to low quantum efficiency of photocatalytic process and seriously restrict its photocatalytic activity. Herein, crystalline poly(triazine imide) (PTI) with different morphologies was synthesized by molten salts method. The results showed that the layer structure, hollow tubes and nanosheets of crystalline PTI were obtained according to different mass ratio of raw materials and molten salt. The degradation of rhodamine B under visible light irradiation was used to evaluate the catalytic activity of the photocatalyst. The PTI nanosheets exhibited highest visible light catalytic activity due to the increase in specific surface area and improvement of separation efficiency of electron hole pairs. A possible mechanism was also raised according to the results of trapping experimental and spectroscopic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)

    Article  Google Scholar 

  2. G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 132, 11642–11648 (2010)

    Article  Google Scholar 

  3. X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596–1606 (2012)

    Article  Google Scholar 

  4. C. Wang, H.Q. Fan, X.H. Ren, J.W. Fang, J.W. Ma, N. Zhao, Mater. Charact. 139, 89–99 (2018)

    Article  Google Scholar 

  5. Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10, 2745–2751 (2016)

    Article  Google Scholar 

  6. L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang, J. Ye, Small 12, 4431–4439 (2016)

    Article  Google Scholar 

  7. S.P. Wang, C.J. Li, T. Wang, P. Zhang, A. Li, J.L. Gong, J. Mater. Chem. A 2, 2885–2890 (2014)

    Article  Google Scholar 

  8. Z.Y. Jin, Q. Zhang, S.S. Yuan, T. Ohno, RSC Adv. 5, 4026–4029 (2015)

    Article  Google Scholar 

  9. X. Yan, G.T. Ning, P. Zhao, Catalysts 9, 55 (2019)

    Article  Google Scholar 

  10. J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A 1, 14766–14772 (2013)

    Article  Google Scholar 

  11. X. Jin, V.V. Balasubramanian, S.T. Selvan, D.P. Sawant, M.A. Chari, G.Q. Lu, A. Vinu, Angew. Chem. Int. Ed. 121, 8024–8027 (2009)

    Article  Google Scholar 

  12. M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y. Zhang, P. Srinivasu, H. Iwai, H. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Y. Yamauchi, Chem. Commun. 47, 8124–8126 (2011)

    Article  Google Scholar 

  13. E. Wirnhier, M. Döblinger, D. Gunzelmann, J. Senker, B.V. Lotsch, W. Schnick, Chem. Eur. J. 17, 3213–3221 (2011)

    Article  Google Scholar 

  14. Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem.-Asian. J. 8, 218–224 (2013)

    Article  Google Scholar 

  15. K. Schwinghammer, B. Tuffy, M.B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B.V. Lotsch, Angew. Chem. Int. Ed. 125, 2495–2499 (2013)

    Article  Google Scholar 

  16. K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, J. Am. Chem. Soc. 136, 1730–1733 (2014)

    Article  Google Scholar 

  17. L. Liu, Q. Shi, N. Yin, M. Zhang, X. Liu, H. Zheng, G. Wu, P. Chen, Carbon 124, 486–491 (2017)

    Article  Google Scholar 

  18. W.R. Lee, Y.S. Jun, J. Park, G.D. Stucky, J. Mater. Chem. A 3, 24232–24236 (2015)

    Article  Google Scholar 

  19. H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B 203, 300–313 (2017)

    Article  Google Scholar 

  20. H. Zhang, F. Liu, Z.G. Mou, X.F. Liu, J.H. Sun, W.W. Lei, Chem. Commun. 52, 13020–13022 (2016)

    Article  Google Scholar 

  21. P.J. Xue, H. Wu, Y. Lu, X.H. Zhu, J. Mater. Sci. Technol. 34, 914–930 (2018)

    Article  Google Scholar 

  22. Y.B. Mao, T.J. Park, F. Zhang, H.J. Zhou, S.S. Wong, Small 7, 1122–1139 (2007)

    Article  Google Scholar 

  23. L. Tian, J. Li, F. Liang, J. Wang, S. Li, H. Zhang, S. Zhang, Appl. Catal. B 225, 307–313 (2018)

    Article  Google Scholar 

  24. S.Y. Lee, C.H. Lee, D.Y. Kim, J.P. Locquet, J.W. Seo, Nanomaterials 5, 1397–1417 (2015)

    Article  Google Scholar 

  25. X. Yan, Q. Gao, J. Qin, X.Y. Hui, Z.M. Ye, J.C. Li, Z.Y. Ma, Mater. Lett. 217, 1–4 (2018)

    Article  Google Scholar 

  26. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243–2245 (2002)

    Article  Google Scholar 

  27. X.F. Chen, J. Wei, R.J. Hou, Y. Liang, Z.L. Xie, Y.G. Zhu, X.W. Zhang, H.T. Wang, Appl. Catal. B 188, 342–350 (2016)

    Article  Google Scholar 

  28. P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22, 4763–4770 (2012)

    Article  Google Scholar 

  29. F. Hou, Y. Li, Y.T. Gao, S. Hu, B.G. Wu, H.L. Bao, H. Wang, B.J. Jiang, Mater. Res. Bull. 110, 18–23 (2019)

    Article  Google Scholar 

  30. Y. Yin, J.C. Han, X.H. Zhang, Y.M. Zhang, J.G. Zhou, D. Muir, R. Sutarto, Z.H. Zhang, S.W. Liu, B. Song, RSC Adv. 4, 32690–32697 (2014)

    Article  Google Scholar 

  31. M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789–1792 (2005)

    Article  Google Scholar 

  32. X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, J. Am. Chem. Soc. 131, 1680–1681 (2009)

    Article  Google Scholar 

  33. X. Yan, J. Qin, G.T. Ning, J.T. Li, T. Ai, X.H. Su, Z.J. Wang, Adv. Powder Technol. 30, 359–365 (2019)

    Article  Google Scholar 

  34. X. Chen, P. Tan, B. Zhou, H.G. Dong, J. Pan, X. Xiong, J. Alloys. Compd. 647, 456–462 (2015)

    Article  Google Scholar 

  35. H. Lv, G. Ji, Z.H. Yang, Y.S. Liu, X.M. Zhang, W. Liu, H.Q. Zhang, J. Colloid Interface Sci. 450, 381–387 (2015)

    Article  Google Scholar 

  36. F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, J. Mater. Chem. 21, 15171–15174 (2011)

    Article  Google Scholar 

  37. G.Z. Liao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, J. Mater. Chem. 22, 2721–2726 (2012)

    Article  Google Scholar 

  38. H.Y. Nie, M. Ou, Q. Zhong, S.L. Zhang, L.M. Yu, J. Hazard. Mater. 300, 598–606 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the International Project on Scientific and Technological Cooperation in Shaanxi Province of China (No. 2018KW-052) and Chang’an University Undergraduates Training Programs of Innovation and Entrepreneurship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Yan or Jintong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Li, J. & Zhou, H. Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies. J Mater Sci: Mater Electron 30, 11706–11713 (2019). https://doi.org/10.1007/s10854-019-01531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01531-6

Navigation