Skip to main content
Log in

Dielectric, ferroelectric and electromechanical properties of (1 − x)(Bi0.5Na0.5TiO3xBa(Ti0.8Zr0.2)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Piezoelectric ceramic compounds in the (1 − x)Bi0.5Na0.5TiO3xBaZr0.8Ti0.2O3 (BNT–xBZT) with x = 0–0.05 solid solution series were made by solid-state-reaction method. X-ray diffraction (XRD) of (BNT–xBZT) revealed rhombohedral symmetry for all BZT ratios up to x = 0.04 and changed to tetragonal symmetry for BZT ratio 0.05. Moreover, enhancement in the volume of unit cell with the increasing of BZT ratio was also detected. Scanning electron microscopy demonstrated a variation in the average grain size with increasing in BZT concentration. Dielectric measurements displayed a steady enhancement in the dielectric constant with increase in doping up to ratio x = 0.02 and decreased with increasing in BZT amount. In polarization study the remnant polarization and coercive field was decreased with increasing BZT doping. The strain was increased with the increasing of BZT content and maximum strain of 0.20% was found for x = 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  2. S.H. Choy, X.X. Wong, H.L.W. Chan, C.L. Choy, Appl. Phys. A 89, 775 (2007)

    Article  Google Scholar 

  3. A. Safari, E.K. Akdog, Piezoelectric acoustic materials for transducer Applications (Springer, New York, 2008)

    Book  Google Scholar 

  4. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  5. A. Ullah, A. Ullah, M.J. Iqbal, M.N. Khalid, A. Ali, A. Zeb, T. Khan, I.W. Kim, J. Mater. Sci. Mater. Electron. 28, 8397–8404 (2017)

    Article  Google Scholar 

  6. A. Ullah, H.B. Gul, A. Ullah, M. Sheeraz, J.S. Bae, W. Jo, C.W. Ahn, I.W. Kim, T.H. Kim, APL Mater. 6, 016104 (2018)

    Article  Google Scholar 

  7. M. Ullah, H.U. Khan, A. Ullah, A. Ullah, I.W. Kim, I. Qazi, I. Ahmad, Ceram. Int. 44, 556–562 (2018)

    Article  Google Scholar 

  8. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, J. Eur. Ceram. Soc. 34, 29–35 (2014)

    Article  Google Scholar 

  9. A. Ullah, M. Alam, A. Ullah, C.W. Ahn, J.S. Lee, S. Cho, I.W. Kim, RSC Adv. 6, 63915 (2016)

    Article  Google Scholar 

  10. A. Ullah, M. Rahman, M.J. Iqbal, C.W. Ahn, I.W. Kim, A. Ullah, J. Korean Phys. Soc. 68(12), 1455–1460 (2016)

    Article  Google Scholar 

  11. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. Part 1 30, 2236 (1991)

    Article  Google Scholar 

  12. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. Part 1 38, 5564 (1999)

    Article  Google Scholar 

  13. X. Wang, H.L.W. Chan, C.L. Choy, Sol. Stat. Commun. 125, 395 (2003)

    Article  Google Scholar 

  14. D.E. Rase, R. Roy, J. Am. Ceram. Soc. 38, 102 (1955)

    Article  Google Scholar 

  15. W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, J. Alloy. Compd. 492, 307 (2010)

    Article  Google Scholar 

  16. H. Nagata, J. Ceram. Soc. Jpn. 116(1350), 271–277 (2008)

    Article  Google Scholar 

  17. T. Song et al., J. Korean Phys. Soc. 51, 697 (2007)

    Article  Google Scholar 

  18. E. Aksel, J.L. Jones, Sensors 10(3), 1935–1954 (2010)

    Article  Google Scholar 

  19. Z. Zhang, J. Jia, H. Yang, C. Chen, H. Sun, X. Hu, D. Yang, J. Mater. Sci. 43, 1501 (2008)

    Article  Google Scholar 

  20. Y. Huang, Y. Liu, L. Gao, T. Liu, G. Zhang, J. Mater. Sci. Mater. Electron. 21, 1055–1059 (2010)

    Article  Google Scholar 

  21. A. Hussain, J.U. Rahman, A. Maqbool, M.S. Kim, T.K. Song, W.J. Kimand, M.H. Kim, Phys. Status Solidi A 211, 1704 (2014)

    Article  Google Scholar 

  22. C.H. Wang, J. Ceram. Soc. Jpn 116, 632–636 (2008)

    Article  Google Scholar 

  23. B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcante, S. Panigrahi, E. Longo, N.C. Batista, T.P. Sinha, Ceram. Int. 39, 4877–4886 (2013)

    Article  Google Scholar 

  24. F. Guo, B. Yang, S. Zhang, F. Wu, D. Liu, P. Hu, Y. Sun, D. Wang, W. Cao, Appl. Phys. Lett. 103, 182906 (2013)

    Article  Google Scholar 

  25. A. Ullah, M. Ullah, A. Ullah, A. Ullah, G. Sadiq, B. Ullah, A. Zeb, S.U. Jan, I.W. Kim, J. Korean Phys. Soc. 34, 589–594 (2019)

    Article  Google Scholar 

  26. D. Li, Z.Y. Shen, Z. Li, X. Wang, W.Q. Luo, F. Song, Z. Wang, Y. Li, J. Mater. Sci. Mater. Electron. 30, 5917–5922 (2019)

    Article  Google Scholar 

  27. M. Xiao, H. Sun, Y. Wei, L. Li, P. Zhang, J. Mater. Sci. Mater. Electron. 29, 17689–17694 (2018)

    Article  Google Scholar 

  28. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. 25, 925 (1969)

    Article  Google Scholar 

  29. W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, J. Alloys Compd. 492, 307 (2010)

    Article  Google Scholar 

  30. A. Rachakom, P. Jaiban, S. Jiansirisomboon, A. Watcharapasorn, NanoRes. Lett. 7, 57 (2012)

    Article  Google Scholar 

  31. E.R. Leite, A.M. Scotch, A. Khan, T. Li, H.M. Chan, M.P. Harmer, S.F. Liu, S.E. Park, J. Am. Ceram. Soc. 85, 3018–3024 (2002)

    Article  Google Scholar 

  32. M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843 (2008)

    Article  Google Scholar 

  33. Z. Yang, B. Liu, L. Wei, Y. Hou, Mater. Res. Bull. 43, 81 (2008)

    Article  Google Scholar 

  34. Q. Zhou, C. Zhou, W. Li, J. Cheng, H. Wang, C. Yuan, J. Phys. Chem. Sol. 72, 909 (2011)

    Article  Google Scholar 

  35. C. Zhou, X. Liu, W. Liu, C. Yuan, J. Phys. Chem. Sol. 70, 541 (2009)

    Article  Google Scholar 

  36. P. Jaita, A. Watcharapasorn, S. Jiansirisomboon, Nano Res. Lett. 7, 24 (2012)

    Article  Google Scholar 

  37. A. Ullah, C.W. Ahn, R.A. Malik, J.S. Lee, I.W. Kim, J. Electroceram. 33, 187–194 (2014)

    Article  Google Scholar 

  38. J. Chen, X.L. Tan, W. Jo, J. Rödel, J. Appl. Phys. 106, 034109 (2009)

    Article  Google Scholar 

  39. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (University of Michigan, R.A.N Publishers, Marietta, 1971)

    Google Scholar 

  40. V.Q. Nguyen, H.S. Han, K.J. Kim, D.D. Dang, K.K. Ahn, J.S. Lee, J Alloys Compd. 511, 237–241 (2012)

    Article  Google Scholar 

  41. V.D.N. Tran, A. Hussain, H.S. Han, T.H. Dinh, J.S. Lee, C.W. Ahn, I.W. Kim, Jpn. J. Appl. Phys. 51, 0902 (2012)

    Article  Google Scholar 

  42. V.D.N. Tran, H.S. Han, C.H. Yoon, J.S. Lee, J. Rödel, Mater. Lett. 60, 2607–2609 (2011)

    Article  Google Scholar 

  43. A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Sens Acta A 158, 84–89 (2010)

    Article  Google Scholar 

  44. A. Hussain, A. Zaman, Y. Iqbal, M.H. Kim, J Alloys Compd 574, 320–324 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Education (No. NRF-2017 R1D1A1B03036032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Ullah or III Won Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.J., Ullah, A., Rehman, I.U. et al. Dielectric, ferroelectric and electromechanical properties of (1 − x)(Bi0.5Na0.5TiO3xBa(Ti0.8Zr0.2)O3 ceramics. J Mater Sci: Mater Electron 30, 10686–10693 (2019). https://doi.org/10.1007/s10854-019-01414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01414-w

Navigation