Skip to main content
Log in

Layer-by-layer electrodeposition of high-capacitance nickel–cobalt oxides on FTO substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have obtained nickel–cobalt oxide coatings by a simple two-step synthesis including electrochemical deposition and thermal treatment at 473 K, 573 K and 673 K in air atmosphere. Electrodeposition was carried out by varying the potential at the same time intervals and using one electrolyte bath containing nickel and cobalt salts. A glass tray with a fluorine-doped tin oxide coating was chosen as a chemically inert and high-temperature resistant substrate. Structural analysis by X-ray diffraction confirmed the formation of spinel-type nickel cobaltite NiCo2O4. The influence of annealing temperature on the pseudocapacitive performance of the films has been investigated using cyclic voltammetry and galvanostatic charge–discharge techniques in 0.1 M NaOH. NiCo2O4 nanostructures exhibited good electrochemical performance with high specific capacitance of 1332 F g−1 at 1 A g−1, and excellent cycle stability with 95% retention of SC after 500 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Garg, M. Basu, A.K. Ganguli, J. Phys. Chem. C 118, 17332 (2014)

    Article  Google Scholar 

  2. W. Cao, W. Wang, H. Shi et al., Nano Res. 11, 1437 (2018)

    Article  Google Scholar 

  3. M. Cao, X. Wang, W. Cao et al., Small 14, 1800987 (2018)

    Article  Google Scholar 

  4. D.P. Dubal, R. Holze, P. Gomez-Romero, Sci. Rep. 4, 7349 (2014)

    Article  Google Scholar 

  5. P.S. Gaikar, S.T. Navale, S.L. Gaikwad et al., Dalton Trans. 46, 3393 (2017)

    Article  Google Scholar 

  6. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  Google Scholar 

  7. B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st edn. (Kluwer-Plenum, New York, 1999), pp. 221–257

    Book  Google Scholar 

  8. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  9. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000)

    Article  Google Scholar 

  10. E. Umeshbabu, G. Rajeshkhanna, G.R. Rao, Int. J. Hydrog. Energ. 39, 15627 (2014)

    Article  Google Scholar 

  11. C. Yuan, H.B. Wu, Y. Xie et al., Angew. Chem. - Int. Ed. 53, 1488 (2014)

    Article  Google Scholar 

  12. Z. Zhang, Q. Tan, Y. Chen et al., J. Mater. Chem. A 2, 5041 (2014)

    Article  Google Scholar 

  13. V. Kumar, C.R. Mariappan, R. Azmi et al., ACS Omega 2, 6003 (2017)

    Article  Google Scholar 

  14. F. Shi, X. Wang, C. Gu et al., RSC Adv. 4, 41910 (2014)

    Article  Google Scholar 

  15. Y. Chen, H. Gan, J.H. Guan et al., J. Alloy. Compd. 760, 6 (2018)

    Article  Google Scholar 

  16. T.H. Kim, G.K. Veerasubramani, S.J. Kim, J. Ind. Eng. Chem. 61, 181 (2018)

    Article  Google Scholar 

  17. S. Liu, D. Ni, H.F. Li et al., J. Mater. Chem. A 6, 10674 (2018)

    Article  Google Scholar 

  18. W.J. Zhou, D.D. Zhao, M.W. Xu et al., Electrochim. Acta 53, 7210 (2008)

    Article  Google Scholar 

  19. G.H.A. Therese, P.V. Kamath, Chem. Mater. 12, 1195 (2000)

    Article  Google Scholar 

  20. R.S. Jayashree, P. Vishnu Kamath, J. Power Sources 93, 273 (2001)

    Article  Google Scholar 

  21. J. Yang, H. Liu, W.N. Martens et al., J. Phys. Chem. C 114, 111 (2010)

    Article  Google Scholar 

  22. R.S. Jayashree, P. Vishnu Kamath, J. Appl. Electrochem. 29, 449 (1999)

    Article  Google Scholar 

  23. R.S. Jayashree, P.V. Kamath, J. Mater. Chem. 9, 961 (1999)

    Article  Google Scholar 

  24. D.S. Hall, D.J. Lockwood, C. Bock et al., Proc. R. Soc. A 471, 20140792 (2014)

    Article  Google Scholar 

  25. Z. Zhang, Y. Jiang, X. Zheng et al., New J. Chem. 42, 11285 (2018)

    Article  Google Scholar 

  26. Y. Gao, H. Li, G. Yang, Cryst. Growth Des. 15, 4475 (2015)

    Article  Google Scholar 

  27. R.L. Doyle, M.E.G. Lyons, Phys. Chem. Chem. Phys. 15, 5224 (2013)

    Article  Google Scholar 

  28. V. Gupta, T. Kusahara, H. Toyama et al., Electrochem. Commun. 9, 2315 (2007)

    Article  Google Scholar 

  29. S. Shahrokhian, S. Rahimi, R. Mohammadi, Int. J. Hydrog. Energ. 43, 2256 (2018)

    Article  Google Scholar 

  30. L. Jiang, Y. Sui, J. Qi et al., Appl. Surf. Sci. 426, 148 (2017)

    Article  Google Scholar 

  31. B. Raveau, M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2012), pp. 211–231

    Book  Google Scholar 

  32. E. Umeshbabu, G. Rajeshkhanna, P. Justin et al., Mater. Chem. Phys. 165, 235 (2015)

    Article  Google Scholar 

  33. Y.H. Chen, J.F. Zhou, D. Mullarkey et al., AIP Adv. 5, 087122 (2015)

    Article  Google Scholar 

  34. Y. Si, C. Guo, C. Xie et al., Materials 11, 1912 (2018)

    Article  Google Scholar 

  35. R.J. Deokate, R.S. Kalubarme, C.J. Park et al., Electrochim. Acta 224, 378 (2017)

    Article  Google Scholar 

  36. F. Zhifu, W. Haihong, L. Zhikun et al., Vacuum 137, 125 (2017)

    Article  Google Scholar 

  37. D. Li, F. Yu, Z. Yu et al., Mater. Lett. 158, 17 (2015)

    Article  Google Scholar 

  38. V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, J. Phys. C Solid State 21, L199 (1988)

    Article  Google Scholar 

  39. Y. Li, W. Qiu, F. Qin et al., J. Phys. Chem. C 120, 4511 (2016)

    Article  Google Scholar 

  40. X. He, X. Song, W. Qiao et al., J. Phys. Chem. C 119, 9550 (2015)

    Article  Google Scholar 

  41. Y. Li, F.M. Li, X.Y. Meng et al., Nano Energy 54, 238 (2018)

    Article  Google Scholar 

  42. A. Azor, M.L. Ruiz-Gonzalez, F. Gonell et al., Chem. Mater. 30, 4986 (2018)

    Article  Google Scholar 

  43. Q. Liao, N. Li, S. Jin et al., ACS Nano 9, 5310 (2015)

    Article  Google Scholar 

  44. W.K. Behl, J.E. Toni, J. Electroanal. Chem. 31, 63 (1971)

    Article  Google Scholar 

  45. N. Maki, N. Tanaka, Cobalt, 1st edn. (Marcel Dekker Inc., USA, 1985), pp. 367–382

    Google Scholar 

  46. M. Jayalakshmi, M.M. Rao, K.B. Kim, Int. J. Electrochem. Sci. 1, 324 (2006)

    Google Scholar 

  47. G. Periyasamy, K. Annamalai, Appl. Surf. Sci. 449, 705 (2018)

    Article  Google Scholar 

  48. P. Taberna, P. Simon, Electrochemical Techniques, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013), pp. 111–130

    Google Scholar 

  49. R.C. Ambare, B.J. Lokhande, J. Mater. Sci. -Mater. El. 29, 16289 (2018)

    Article  Google Scholar 

  50. L. Halder, A. Maitra, A.K. Das et al., Electrochim. Acta 283, 438 (2018)

    Article  Google Scholar 

  51. C. Lamiel, Y.R. Lee, M.H. Cho et al., J. Colloid Interf. Sci. 507, 300 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ieva Barauskienė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barauskienė, I., Valatka, E. Layer-by-layer electrodeposition of high-capacitance nickel–cobalt oxides on FTO substrate. J Mater Sci: Mater Electron 30, 10311–10320 (2019). https://doi.org/10.1007/s10854-019-01369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01369-y

Navigation