Skip to main content
Log in

CuO–ZnO p–n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, CuO–ZnO and Polypyrrole (PPy) nanocomposites are synthesized by one pot sol–gel method and chemical polymerization of pyrrole respectively. Polypyrrole loaded p–n junction is formed by adding different weight percentage (10 wt%, 30 wt% and 50 wt%) of CuO–ZnO nanocomposite with PPy and then coated on a substrate using spin coating method. Elemental analysis is done by X-ray Photoelectron Spectroscopy. The morphological studies by High Resolution Transmission Electron Microscopy and Field Emission Scanning Electron Microscopy show the coating of CuO–ZnO nanocomposite on polypyrrole with various weight ratios. The crystal structure and chemical composition of the nanocomposites are characterized by X-ray Diffraction and Fourier Transform Infrared Spectroscopy respectively. From the UV–visible Spectroscopy, the band gap energy of the Polypyrrole is calculated as 3.05 eV. The electrodes are investigated for sensing towards Oxygen, Hydrogen and LPG at room temperature. It reveals that the fabricated electrodes can selectively sense the oxygen gas with improved sensitivity, response time and recovery time. The nanocomposite containing 50 wt% of CuO–ZnO have high response with low response time and recovery time towards oxygen gas in the range of 40–200 parts per million (ppm) at room temperature (30 °C). The sensitivity of the electrodes is highly stable for the period of 50 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Ameer, S.B. Adeloju, Sens. Actuators B 106, 541 (2005)

    Article  Google Scholar 

  2. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Sensors 12, 2610 (2012)

    Article  Google Scholar 

  3. A.B. Moghaddam, T. Nazari, J. Badraghi, M. Kazemzad, Int. J. Electrochem. Sci. 4, 247 (2009)

    Google Scholar 

  4. H. Eisazadeh, World J. Chem. 2, 67 (2007)

    Google Scholar 

  5. N. Gupta, S. Sharma, I.A. Mir, D. Kumar, J. Sci. Ind. Res. 65, 549 (2006)

    Google Scholar 

  6. H. Yoon, Nanomaterials 3, 524 (2013)

    Article  Google Scholar 

  7. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators, B 115, 247 (2006)

    Article  Google Scholar 

  8. W. Nianqiang, M. Zhao, J.-G. Zheng, C. Jiang, B. Myers, S. Li, M. Chyu, S.X. Mau, Nanotechnology 16, 2878 (2005)

    Article  Google Scholar 

  9. E. Comini, Anal. Chim. Acta 568, 28 (2006)

    Article  Google Scholar 

  10. H. Bai, G. Shi, Sensors 7, 267 (2007)

    Article  Google Scholar 

  11. D.R. Miller, S.A. Akbar, P.A. Morris, Sens. Actuators, B 14, 00914 (2014)

    Google Scholar 

  12. M.K. Ram, Ö. Yavuz, V. Lahsangah, M. Aldissi, Matt Sens. Actuators B 106, 750 (2005)

    Article  Google Scholar 

  13. A. Malinauskas, J. Malinauskiene, A. Ramanavičius, Nanotechnology 16, 51 (2005)

    Article  Google Scholar 

  14. M. Omastova, M. Trchova, J. Kovářová, J. Stejskal, Synth. Metals 138, 447 (2003)

    Article  Google Scholar 

  15. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  Google Scholar 

  16. H. Ying, X. Zhou, Q. Han, Q. Cao, Y. Huang, Mater. Sci. Eng. 99, 41 (2003)

    Article  Google Scholar 

  17. M.A. Chougule, D.S. Dalavi, S. Mali, P.S. Patil, A.V. Moholkar, G.L. Agawane, J.H. Kim, S. Sen, V.B. Patil, Measurement 45, 1989 (2012)

    Article  Google Scholar 

  18. B. Li, Y. Wang, Superlattices Microstruct. 47, 615 (2010)

    Article  Google Scholar 

  19. G. Kickelbick, Prog. Polym. Sci. 28, 83 (2003)

    Article  Google Scholar 

  20. G. Jimenez-Cadena, J. Riu, F. Xavier Rius, Analyst 132, 1083 (2007)

    Article  Google Scholar 

  21. T. Ahuja, D. Kumar, Sens. Actuators, B 136, 275 (2009)

    Article  Google Scholar 

  22. X.-J. Huang, Y.-K. Choi, Sens. Actuators, B 122, 659 (2007)

    Article  Google Scholar 

  23. H.-K. Jun, Y.-S. Hoh, B.-S. Lee, S.-T. Lee, J.-O. Lim, D.-D. Lee, J.-S. Huh, Sens. Actuators, B 96, 576 (2003)

    Article  Google Scholar 

  24. L. An, G. Wang, X. Shi, S. Min, F. Gao, Y. Cheng, Russ. J. Phys. Chem. A 88, 2419 (2014)

    Article  Google Scholar 

  25. C.R.K. Rao, R. Muthukannan, J. Adriel Jebin, T. Antony Raj, M. Vijayan, Indian J. Chem. 52, 744 (2013)

    Google Scholar 

  26. V.T. Bhugul, G.N. Choudhari, Int. J. Sci. Res. Publ. 5, 1 (2015)

    Google Scholar 

  27. M.A. Chougule, S.G. Pawar, P.R. Godse, R.N. Mulik, S. Sen, V.B. Patil, Soft Nanosci. Lett. 1, 6 (2011)

    Article  Google Scholar 

  28. V.S. Kalyamwar, F.C. Raghuwanshi, N.L. Jadha, A.J. Gadewar, J. Sensor Technol. 3, 31 (2013)

    Article  Google Scholar 

  29. L. Xiaofeng, W. Zhang, C. Wang, T.-C. Wen, Y. Wei, Prog. Polym. Sci. 36, 671 (2011)

    Article  Google Scholar 

  30. C. Wang, J. Zhu, S. Liang, H. Bi, Q. Han, X. Liu, X. Wang, J. Mater. Chem. A 2, 18635 (2014)

    Article  Google Scholar 

  31. X. Zhang, J. Zhang, W. Song, Z. Liu, J. Phys. Chem. B 110, 1158 (2006)

    Article  Google Scholar 

  32. G.N. Gerasimov, V.F. Gromov, O.J. Ilegbusi, L.I. Trakhtenberg, Sens. Actuators, B 240, 613 (2017)

    Article  Google Scholar 

  33. S. Pi-Guey, Y.-T. Peng, Sens. Actuators, B 193, 637 (2014)

    Article  Google Scholar 

  34. A. Joshi, S.A. Gangal, S.K. Gupta, Sens. Actuators, B 156, 938 (2011)

    Article  Google Scholar 

  35. G. Korotcenkov, Mater. Sci. Eng., B 139, 1 (2007)

    Article  Google Scholar 

  36. J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 28, 795 (2016)

    Article  Google Scholar 

  37. I.H. Kadhim, H. Abu Hassan, Q.N. Abdullah, Nano-Micro Lett. 8, 20 (2016)

    Article  Google Scholar 

  38. R. Kalyani, K. Gurunathan, J. Mater. Sci.: Mater. Electron. 27, 10634 (2016)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Alagappa University Research Fund (AURF) and DST-PURSE for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurunathan Karuppasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albaris, H., Karuppasamy, G. CuO–ZnO p–n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature. J Mater Sci: Mater Electron 30, 9989–9998 (2019). https://doi.org/10.1007/s10854-019-01341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01341-w

Navigation