Skip to main content

Advertisement

Log in

Analysis of temperature-dependent transmittance spectra of Zn0.5In0.5Se (ZIS) thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Temperature-dependent transmission experiments of ZnInSe thin films deposited by thermal evaporation method were performed in the spectral range of 550–950 nm and in temperature range of 10–300 K. Transmission spectra shifted towards higher wavelengths (lower energies) with increasing temperature. Transmission data were analyzed using Tauc relation and derivative spectroscopy. Analysis with Tauc relation was resulted in three different energy levels for the room temperature band gap values of material as 1.594, 1.735 and 1.830 eV. The spectrum of first wavelength derivative of transmittance exhibited two maxima positions at 1.632 and 1.814 eV and one minima around 1.741 eV. The determined energies from both methods were in good agreement with each other. The presence of three band gap energy levels were associated to valence band splitting due to crystal-field and spin–orbit splitting. Temperature dependence of the band gap energies were also analyzed using Varshni relation and gap energy value at absolute zero and the rate of change of gap energy with temperature were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.K. Tripathy, A. Pattanaik, Opt. Mater. 53, 123–133 (2016)

    Article  Google Scholar 

  2. S. Mahato, A.K. Kar, J. Sci. Adv. Mater. Dev. 2, 165–171 (2017)

    Google Scholar 

  3. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, S.R. Gosavi, J. Sci. Adv. Mater. Dev. 1, 476–481 (2017)

    Google Scholar 

  4. A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compds. 685, 733–742 (2016)

    Article  Google Scholar 

  5. M.T. Chowdhury, MdA Zubair, H. Takeda, KMdA Hussain, MdF Islam, AIMS Mater. Sci. 4, 1095–1121 (2017)

    Article  Google Scholar 

  6. M. Parlak, Ç. Erçelebi, Thin Solid Films 322, 334–339 (1998)

    Article  Google Scholar 

  7. K. Ou, S. Wang, G. Wan, M. Huang, Y. Zhang, L. Bai, L. Yi, J. Alloys Compds. 726, 707–711 (2017)

    Article  Google Scholar 

  8. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, K. Kim, J. Yi, Physica B 358, 27–35 (2005)

    Article  Google Scholar 

  9. F.I. Mustafa, S. Gupta, N. Goyal, S.K. Tripathi, Physica B 405, 4087–4091 (2010)

    Article  Google Scholar 

  10. L. Chen, C. Fang, Appl. Mech. Mater. 321–324, 264–267 (2013)

    Google Scholar 

  11. A. Rumberg, Ch. Sommerhalter, M. Toplak, A. Jäger-Waldau, MCh. Lux-Steiner, Thin Solid Films 361–362, 172–176 (2000)

    Article  Google Scholar 

  12. B. Chen, H. Zhong, R. Li, Y. Zhou, Y. Ding, Y. Li, B. Zou, Sci. Adv. Mater. 4, 342–345 (2012)

    Article  Google Scholar 

  13. Y.C. Li, H.Z. Zhong, R. Li, Y. Zhou, C.H. Yang, Y.F. Li, Adv. Func. Mater. 16, 1705–1716 (2006)

    Article  Google Scholar 

  14. A. Hirohata, J.S. Moodera, G.P. Berera, Thin Solid Films 510, 247–250 (2006)

    Article  Google Scholar 

  15. T.A. Hendia, L.I. Soliman, Thin Solid Films 261, 322–327 (1995)

    Article  Google Scholar 

  16. S.H. Choe, Curr. Appl. Phys. 9, 1–3 (2009)

    Article  Google Scholar 

  17. H.M. Zeyada, M.S. Aziz, A.S. Behairy, Physica B 404, 3957–3963 (2009)

    Article  Google Scholar 

  18. R. Jeyakumar, S.T. Lakshmikumar, A.C. Rastogi, Mater. Res. Bull. 37, 617–629 (2002)

    Article  Google Scholar 

  19. H.H. Gullu, E. Coskun, M. Parlak, Optik 144, 603–612 (2017)

    Article  Google Scholar 

  20. H.H. Gullu, M. Parlak, Mod. Phys. Lett. B 31, 1750043-1–1750043-15 (2017)

    Article  Google Scholar 

  21. S.P. Yadav, P.S. Shinde, K.Y. Rajpure, C.H. Bhosale, J. Phys. Chem. Solids 69, 1747–1752 (2008)

    Article  Google Scholar 

  22. K.W. Cheng, Y.H. Cheng, M.S. Fan, Int. J. Hydrogen Energy 37, 13763–13769 (2012)

    Article  Google Scholar 

  23. S.P. Yadav, P.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Sol. Energy Mater. 92, 453–456 (2008)

    Article  Google Scholar 

  24. H.S. Soliman, M.M. El-Nahass, A. Qusto, J. Mater. Sci. 26, 1556–1564 (1991)

    Article  Google Scholar 

  25. M.M. El-Nahass, A.A. Attia, G.F. Salem, H.A.M. Ali, M.I. Ismail, Physica B 425, 23–30 (2013)

    Article  Google Scholar 

  26. R.E. Marsh, W.R. Robinson, J. Solid State Chem. 73, 591–592 (1988)

    Article  Google Scholar 

  27. P.V. Shapkin, A.S. Nasibov, Y.F. Vaksman, Y.A. Nitsuk, Y.N. Purtov, Inorg. Mater. 42, 845–849 (2006)

    Article  Google Scholar 

  28. K. Lott, S. Shinkarenko, O. Volobujeva, L. Turn, T. Nirk, A. Öpik, R. Nisumaa, U. Kallavus, M. Nöges, V. Mikli, M. Viljus, E. Gorokhova, G. Anan’eva, A. Grebennik, A. Vishnjakov, Phys. Status Solidi B 244, 1623–1626 (2007)

    Article  Google Scholar 

  29. G. Gordillo, E. Romero, Thin Solid Films 484, 352–357 (2005)

    Article  Google Scholar 

  30. D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 480–481, 99–109 (2005)

    Article  Google Scholar 

  31. S. Siebentritt, Sol. Energy 77, 767–775 (2004)

    Article  Google Scholar 

  32. X. Sun, Y. He, J. Feng, J. Cryst. Growth 312, 48–51 (2009)

    Article  Google Scholar 

  33. H.H. Gullu, M. Parlak, Energy Procedia 102, 110–210 (2016)

    Article  Google Scholar 

  34. J.L. Shay, J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, Oxford, 1975)

    Google Scholar 

  35. S.R. Kodigala, Cu(In 1−x Ga x )Se 2 Based Thin Film Solar Cells (Elseiver, Oxford, 2010)

    Google Scholar 

  36. R.H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  37. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  38. H.H. Gullu, E. Coskun, M. Parlak, Phys. Status Solidi C 12, 1224–1228 (2015)

    Article  Google Scholar 

  39. G. Venkata Rao, G. Hema Chandra, P. Sreedhara Reddy, O.M. Hussain, K.T. Ramakrishna Reddy, S. Uthanna, Vacuum 67, 293–298 (2002)

    Article  Google Scholar 

  40. V.F. Gremenok, I.V. Bodnar, I. Martil, F.L. Martines, S.L. Sergeev-Nekrasov, I.A. Victorov, Solid State Phenom. 67–68, 361–366 (1999)

    Article  Google Scholar 

  41. R.R. Philip, B. Pradeep, Semicond. Sci. Technol. 17, 1157–1161 (2002)

    Article  Google Scholar 

  42. V.V. Kindyak, A.S. Kindyak, V.F. Gremenok, I.A. Victorov, Thin Solid Films 293, 75–77 (1997)

    Article  Google Scholar 

  43. Y.P. Varshni, Physica 34, 149–154 (1967)

    Article  Google Scholar 

  44. J.L. Shay, B. Tell, Surf. Sci. 37, 748–762 (1973)

    Article  Google Scholar 

  45. G.S. Shahane, B.M. More, C.B. Rotti, L.P. Deshmukh, Mater. Chem. Phys. 47, 263–267 (1997)

    Article  Google Scholar 

  46. S. Azizi, H.R. Dizaji, M.H. Ehsani, Optik 127, 7104–7114 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Delice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Gullu, H.H., Delice, S. et al. Analysis of temperature-dependent transmittance spectra of Zn0.5In0.5Se (ZIS) thin films. J Mater Sci: Mater Electron 30, 9356–9362 (2019). https://doi.org/10.1007/s10854-019-01265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01265-5

Navigation