Skip to main content
Log in

Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon nanowire (SiNW) is a promising material for micro-supercapacitors (μ-SCs). However, the practical application of SiNW μ-SCs is hindered due to the instability of Si in aqueous solutions. Here, we demonstrate that the overall capacitive properties of SiNW μ-SCs can be improved by a facile TiO2 coating treatment. In this study, SiNWs were fabricated by metal-assisted chemical etching and TiO2 was spin-coated on SiNWs. With the optimal processing condition, the TiO2-coated SiNWs (T-SiNWs) exhibit an areal capacitance of 2.69 mF cm−2 at the scan rate of 50 mV s−1 and 3.55 mF cm−2 at the current density of 0.1 mA cm−2, respectively. Further, an enhanced rate capability of T-SiNWs is observed owing to the TiO2 coating. Moreover, a retention of 68.8% is obtained by T-SiNWs after 1000 galvanostatic charge–discharge cycles, which is higher than that of the bare SiNWs. The reasons for the capacitive property enhancement of the electrode materials were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)

    Article  Google Scholar 

  2. J.P. Alper, M. Vincent, C. Carraro, R. Maboudian, Appl. Phys. Lett. 100, 163901 (2012)

    Article  Google Scholar 

  3. A. Soam, N. Arya, A. Singh, R. Dusane, Chem. Phys. Lett. 678, 46 (2017)

    Article  Google Scholar 

  4. J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, J. Power Sources 230, 298 (2013)

    Article  Google Scholar 

  5. L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, W. Mai, Chem. Commun. 52, 6296 (2016)

    Article  Google Scholar 

  6. L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Nano Energy 21, 276 (2016)

    Article  Google Scholar 

  7. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)

    Article  Google Scholar 

  8. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  Google Scholar 

  9. J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nano Energy 25, 193 (2016)

    Article  Google Scholar 

  10. G. Lian, C.-C. Tuan, L. Li, S. Jiao, K.-S. Moon, Q. Wang, D. Cui, C.-P. Wong, Nano Lett. 17, 1365 (2017)

    Article  Google Scholar 

  11. P. Huang, D. Pech, R. Lin, J.K. McDonough, M. Brunet, P.-L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun. 36, 53 (2013)

    Article  Google Scholar 

  12. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)

    Article  Google Scholar 

  13. P. Lu, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, X. Chen, Electrochem. Commun. 70, 51 (2016)

    Article  Google Scholar 

  14. N. Berton, M. Brachet, F. Thissandier, J. Le Bideau, P. Gentile, G. Bidan, T. Brousse, S. Sadki, Electrochem. Commun. 41, 31 (2014)

    Article  Google Scholar 

  15. F. Thissandier, L. Dupré, P. Gentile, T. Brousse, G. Bidan, D. Buttard, S. Sadki, Electrochim. Acta 117, 159 (2014)

    Article  Google Scholar 

  16. D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Müller-Sebert, P. Gentile, S. Pouget, C.E. Nebel, G. Bidan, Electrochim. Acta 242, 173 (2017)

    Article  Google Scholar 

  17. A. Soam, N. Arya, A. Kumbhar, R. Dusane, Appl. Nanosci. 6, 1159 (2016)

    Article  Google Scholar 

  18. A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane, Curr. Appl. Phys. 17, 314 (2017)

    Article  Google Scholar 

  19. D. Aradilla, P. Gentile, G. Bidan, V. Ruiz, P. Gómez-Romero, T.J.S. Schubert, H. Sahin, E. Frackowiak, S. Sadki, Nano Energy 9, 273 (2014)

    Article  Google Scholar 

  20. K. Grigoras, J. Keskinen, L. Grönberg, J. Ahopelto, M. Prunnila, J. Phys: Conf. Ser. 557, 012058 (2014)

    Google Scholar 

  21. F. Lu, M. Qiu, X. Qi, L. Yang, J. Yin, G. Hao, X. Feng, J. Li, J. Zhong, Appl. Phys. A 104, 545 (2011)

    Article  Google Scholar 

  22. L. Oakes, A. Westover, J.W. Mares, S. Chatterjee, W.R. Erwin, R. Bardhan, S.M. Weiss, C.L. Pint, Sci. Rep. 3, 3020 (2013)

    Article  Google Scholar 

  23. S. Chatterjee, R. Carter, L. Oakes, W.R. Erwin, R. Bardhan, C.L. Pint, J. Phys. Chem. C 118, 10893 (2014)

    Article  Google Scholar 

  24. R.R. Devarapalli, S. Szunerits, Y. Coffinier, M.V. Shelke, R. Boukherroub, A.C.S. Appl, Mater. Interfaces 8, 4298 (2016)

    Article  Google Scholar 

  25. J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, R. Maboudian, Nano Lett. 14, 1843 (2014)

    Article  Google Scholar 

  26. X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)

    Article  Google Scholar 

  27. Y. Chen, L. Li, C. Zhang, C.-C. Tuan, X. Chen, J. Gao, C.-P. Wong, Nano Lett. 17, 1014 (2017)

    Article  Google Scholar 

  28. Y. Chen, C. Zhang, L. Li, C.-C. Tuan, F. Wu, X. Chen, J. Gao, Y. Ding, C.-P. Wong, Nano Lett. 17, 4304 (2017)

    Article  Google Scholar 

  29. L. Li, X. Zhao, C.-P. Wong, A.C.S. Appl, Mater. Interfaces 6, 16782 (2014)

    Article  Google Scholar 

  30. L. Li, Y. Liu, X. Zhao, Z. Lin, C.-P. Wong, A.C.S. Appl, Mater. Interfaces 6, 575 (2014)

    Article  Google Scholar 

  31. O.J. Hildreth, A.G. Fedorov, C.P. Wong, ACS Nano 6, 10004 (2012)

    Article  Google Scholar 

  32. G. Zhang, C. Huang, L. Zhou, L. Ye, W. Li, H. Huang, Nanoscale 3, 4174 (2011)

    Article  Google Scholar 

  33. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)

    Article  Google Scholar 

  34. C. Zhang, L. Li, C.-C. Tuan, J. Zhou, F. Xue, C.-P. Wong, J. Mater. Sci.: Mater. Electron. 29, 15130 (2018)

    Google Scholar 

  35. F. Konstantinou, A. Shougee, T. Albrecht, K. Fobelets, J. Phys. Appl. Phys. 50, 415503 (2017)

    Article  Google Scholar 

  36. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gösele, J. Phys. Chem. C 114, 10683 (2010)

    Article  Google Scholar 

  37. M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)

    Article  Google Scholar 

  38. M.-S. Wu, Z.-S. Guo, J.-J. Jow, J. Phys. Chem. C 114, 21861 (2010)

    Article  Google Scholar 

  39. H. Zhou, Y. Zhang, J. Phys. Chem. C 118, 5626 (2014)

    Article  Google Scholar 

  40. F. Thissandier, N. Pauc, T. Brousse, P. Gentile, S. Sadki, Nanoscale Res. Lett. 8, 38 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201602), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA17006-1 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhou or Ching-Ping Wong.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tian, S., Li, L. et al. Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2. J Mater Sci: Mater Electron 30, 8763–8770 (2019). https://doi.org/10.1007/s10854-019-01200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01200-8

Navigation