Skip to main content

Advertisement

Log in

Energy transfer-enhanced external power conversion efficiency in blended polymeric thin film solar devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the spectral and electrical properties of a conjugated polymer poly [(9, 9-dioctyl-2, 7-divinylenefluorenylene)-alt-co-(1, 4-phenylene)] (PFO–MEH–PPV) with poly[3-(2-ethyl-isocyanato-octadecanyl) thiophene] (PECOD) in thin films have been studied. First, PFO–MEH–PPV and PECOD were dissolved in tetrahydrofuran and chloroform respectively for different concentrations. These solutions were deposited on glass substrates to form thin films with different thicknesses. The absorbance and photoluminescence spectra for each individual pure polymer were recorded and contrasted with those for blended conjugated polymer’s films to determine the effect of blending on the absorption and photoluminescence. Finally, we present a study on the processing and characterization of organic solar cells fabricated by spin coating pure PFO–MEH–PPV, PECOD and their blend as the organic active layer onto indium tin oxide layer (150 nm), followed by the evaporation of silver cathode (110 nm). The current–voltage characteristics of these cells were determined and external quantum efficiency. Upon blending the two polymers in solid forms, it could be seen that the efficiency (6.25%) for the cells based on a blend layer is higher than the ones without blending (4.4%). Finally, we demonstrated here that the combination/blending of conjugated polymers has resulted in optimized solar device function, with reasonably quantum efficiency higher than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.R. McNeill, N.C. Greenham, Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009)

    Article  CAS  Google Scholar 

  2. S. Barth, H. Bassler, Intrinsic photoconduction in PPV-type conjugated polymers. Phys. Rev. Lett. 79, 4445–4448 (1997)

    Article  CAS  Google Scholar 

  3. J. Li et al., Photovoltaic properties of MEH–PPV doped with new methanofullerene derivatives. Synth. Met. 137, 1527–1528 (2003)

    Article  CAS  Google Scholar 

  4. S. Kumar, T. Nann, First solar cells based on CdTe nanoparticle/MEH–PPV composites. Mater. Res. Soc. 19, 1990–1994 (2009)

    Article  CAS  Google Scholar 

  5. G. He, J. Liu, Y. Li, Y. Yang, Efficient polymer light-emitting diodes using conjugated polymer blends. Appl. Phys. Lett. 80, 1891–1893 (2002)

    Article  CAS  Google Scholar 

  6. A. Babel, S.A. Jenekhe, High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003)

    Article  CAS  Google Scholar 

  7. H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998)

    Article  CAS  Google Scholar 

  8. J.H. Burroughs, D.C. Bradley, A.R. Brown, R.N. Marks, K.D. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Light-Emitting Diodes Based on Conjugated Polymers. Nature 347, 539–541 (1990)

    Article  Google Scholar 

  9. A. J. Nozik, Quantum dot solar cells. Physica E, 14, 115–120 (2002)

    Article  CAS  Google Scholar 

  10. J. Liu, S.Y. Shi, L. Ma, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of device electrical properties and metal/polymer contact. J. Appl. Phys. 88, 605–607 (2000)

    Article  CAS  Google Scholar 

  11. Y. Shi, J. Liu, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J. Appl. Phys. 87, 4254–4263 (2000)

    Article  CAS  Google Scholar 

  12. X. Deng, Light-emitting devices with conjugated polymers. Int. J. Mol. Sci. 12, 1575–1594 (2001)

    Article  CAS  Google Scholar 

  13. I.H. Campbell, B.K. Crone, Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots. Appl. Phys. Lett. 92, 043303/3 (2008)

    Article  CAS  Google Scholar 

  14. H. Benten, D. Mori, H. Ohkita, S. Ito, Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 4, 5340–5365 (2016)

    Article  CAS  Google Scholar 

  15. D. Olzon-Dionysio, J.F.D. Chubaci, M. Matsuoka, R.M. Faria, F.E.G. Guimaraes, Ion beam assisted deposition of an organic light emitting diode electrode. Surf. Coat. Technol. 204, 3096–3099 (2010)

    Article  CAS  Google Scholar 

  16. S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. 15(8), 727–740 (2007)

    Article  CAS  Google Scholar 

  17. T.-Q. Nguyen, J. Liu, B.J. Schwartz, Controlling interchain interactions in conjugated polymers: the effect of chain morphology on exciton–exciton annihilation and aggregation in MEH–PPV films. J. Phys. Chem. B 104, 237–255 (2000)

    Article  CAS  Google Scholar 

  18. A. Kraft, A.G. Grimsdale, A.B. Holmes, Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)

    Article  Google Scholar 

  19. S.A. Jenekhe, J.A. Osaheni, Excimers and exciplexes of conjugated polymers. Science 265, 765–768 (1994)

    Article  CAS  Google Scholar 

  20. X. Zhang, S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. Macromolecules 33, 2069–2082 (2000)

    Article  CAS  Google Scholar 

  21. N. Mustapha, Z. Fekkai, A. Alkaoud, Enhanced efficiency of organic solar cells based on (MEH–PPV) with graphene and quantum dots. Opt. Int. J. Light Electron Opt. 127, 2755–2760 (2016)

    Article  CAS  Google Scholar 

  22. N. Mustapha, K.H. Ibnaouf, Z. Fekkai, A. Hennache, S. Prasad, A. Alyamani, Improved efficiency of solar cells based on BEHP-co-MEH–PPV doped with ZnO nanoparticles. Opt. Int. J. Light Electron Opt. 124(22), 5524–5527 (2013)

    Article  CAS  Google Scholar 

  23. A. Alyamani, K.H. Ibnaouf, O.S. Yassin, M.S. AlSalhi, Z. Fekkai, N. Mustapha, Spectral, electrical and morphological properties of spin coated MEH–PPV and cresyl violet blended thin films for a light emitting diode. Opt. Int. J. Light Electron Opt. 127, 2331–2335 (2016)

    Article  CAS  Google Scholar 

  24. S. Hameed, P. Predeep, M.R. Baiju, Polymer light emitting diodes-a review on materials and techniques. Rev. Adv. Mater. Sci. 26, 30–42 (2010)

    CAS  Google Scholar 

  25. F.L. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganas, O. Inganäs, Polymer solar cells based on MEH–PPV and PCBM. Synth. Met. 137(1), 1401–1402 (2003)

    Article  CAS  Google Scholar 

  26. S.S. Sharma, K. Sharma, G. D. Sharma, Efficient bulk heterojunction photovoltaic devices based on modified PCBM. Nanotechnol. Rev. 4(5), 419–428 (2015)

    Article  CAS  Google Scholar 

  27. F. Araujo de Castro, J. Heier, F. Nuesch, R. Hany, Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-C60 heterojunction solar cells. IEEE J. Sel. Top. Quantum Electron 16(6), 1690–1699 (2011)

    Article  CAS  Google Scholar 

  28. R. Kisslinger, W. Hua, K. Shankar, Bulk heterojunction solar cells based on blends of conjugated polymers with II–VI and IV–VI inorganic semiconductor quantum dots. Polymers 9(2), 35–63 (2017)

    Article  CAS  Google Scholar 

  29. K. Norrman, A. Ghanbari-Siahkali, N. Larsen, Studies of spin-coated polymer films. Annu. Rep. Prog. Chem. C 101, 174–201 (2005)

    Article  CAS  Google Scholar 

  30. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  CAS  Google Scholar 

  31. F. Zhang, K.G. Jespersen, C. Bjoerstroem, M. Svensson, M.R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganaes, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv. Funct. Mater. 16, 667–674 (2006)

    Article  CAS  Google Scholar 

  32. Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783–1789 (2008)

    Article  CAS  Google Scholar 

  33. S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D.B. Tanner, A.F. Herbard, B.R. Appleton, Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 42570–42571 (2011)

    Article  CAS  Google Scholar 

  34. S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. Res. Appl. 15, 727–740 (2007)

    Article  CAS  Google Scholar 

  35. C. R. McNeill. Morphology of all-polymer solar cells. Energy Environ. Sci. 5, 5653–5667 (2012)

    Article  CAS  Google Scholar 

  36. A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16, 123–132 (2013)

    Article  CAS  Google Scholar 

  37. T. Kim, J.H. Kim, T.E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, T.S. Kim, B.J. Kim, U. Jeong, Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547–8555 (2015)

    Article  CAS  Google Scholar 

  38. C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qui, Z. Wei, Z.G. Zhang, Y. Li, A low cost and high performance donor material for polymer solar cells. Nat. Commun. 9(1), 1–10 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs. We thank Professor Munir H. Nayfeh at the University of Illinois for reading the manuscript and his valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. The idea was proposed by NM who was responsible for writing the draft of the manuscript. SP and MA carried out the experimental work, analysis and discussion of the results. Authors MA and SP reviewed the existing literature and placed the research objectives in perspective. All authors managed the reading, editing and approved the final manuscript.

Corresponding author

Correspondence to Nazir Mustapha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, N., AlSalhi, M.S. & Prasad, S. Energy transfer-enhanced external power conversion efficiency in blended polymeric thin film solar devices. J Mater Sci: Mater Electron 30, 7840–7849 (2019). https://doi.org/10.1007/s10854-019-01103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01103-8

Navigation