Skip to main content
Log in

Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, high transparent bacterial cellulose (HTBC) biocompatible membranes were produced to be used as substrates in organic light-emitting diodes (OLEDs). These multifunctional membranes are based on bacterial cellulose (BC) and an organic–inorganic sol, composed of boehmite (Boe) nanoparticles and epoxi modified siloxane (GTPS). In order to be used as substrates, BC/Boe-GPTS membranes were covered with silicon dioxide (SiO2) and indium tin oxide (ITO) thin films deposited at room temperature using radio frequency (RF) magnetron sputtering. Visible light transmission improves to 88%, instead of 40% previously achieved. The electrical properties for HTBC/SiO2/ITO substrate shows that the ITO deposited films are n-type doped semiconductors with resistivity of 2.7 × 10−4 Ω cm, carrier concentration of − 1.48 × 1021 cm−3, and mobility of 15.2 cm2 V−1 s−1. These values are comparable to those of commercial ITO deposited onto glass substrates. After the characterization of the HTBC film, we used it as a substrate for the fabrication of a small molecule organic light-emitting diode OLED. The maximum efficiencies obtained were 1.95 cd/A and 1.68 cd/A for the reference OLED and the HTBC OLED, respectively. The HTBC OLED efficiency is then around 86% of the standard ITO-based OLED. This is clearly a good improvement, since previous BC-based simple architecture devices without Boe-GPTS have an efficiency 50% smaller than that of the standard OLED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.P. Lima, F.A.A. Paz, C.D.S. Brites, W.G. Quirino, C. Legnani,, R.A.S. Ferreira, S.A. Júnior, O.L. Malta, M. Cremona, L.D. Carlos, M. Costa e Silva. Org. Electron. 15, 798 (2014)

    Article  CAS  Google Scholar 

  2. W. Quirino, R. Reyes, C. Legnani, P.C. Nóbrega, P.A. Santa-Cruz, M. Cremona, Synth. Met. 161, 964 (2011)

    Article  CAS  Google Scholar 

  3. H. Zhu, Z. Xiao, D. Liu, Y. Li, N.J. Weadock, Z. Fang, J. Huang, L. Hu, Energy Environ. Sci. 6, 2105 (2013)

    Article  CAS  Google Scholar 

  4. Y. Yao, J. Tao, J. Zou, B. Zhang, T. Li, J. Dai, M. Zhu, S. Wang, K.K. Fu, D. Henderson, E. Hitz, J. Peng, L. Hu, Energy Environ. Sci. 9, 2278 (2016)

    Article  CAS  Google Scholar 

  5. D. Ha, Z. Fang, L. Hu, J.N. Munday, Adv. Energy Mater. 4, 1 (2014)

    Article  Google Scholar 

  6. S.K. Attili, A. Lesar, A. McNeill, M. Camacho-Lopez, H. Moseley, S. Ibbotson, I.D.W. Samuel, J. Ferguson, Br. J. Dermatol. 161, 170 (2009)

    Article  CAS  Google Scholar 

  7. C. Legnani, C. Vilani, V.L. Calil, H.S. Barud, W.G. Quirino, C.A. Achete, S.J.L. Ribeiro, M. Cremona, Thin Solid Films 517, 1016 (2008)

    Article  CAS  Google Scholar 

  8. E. Fresta, V. Fernández-Luna, P.B. Coto, R.D. Costa, Adv. Funct. Mater. 28, 1 (2018)

    Article  Google Scholar 

  9. D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Prog. Polym. Sci. 26, 1561 (2001)

    Article  CAS  Google Scholar 

  10. F. Esa, S.M. Tasirin, N.A. Rahman, Ital. Oral Surg. 2, 113 (2014)

    Google Scholar 

  11. W. Czaja, A. Krystynowicz, S. Bielecki, R. Brownjr, Biomaterials 27, 145 (2006)

    Article  CAS  Google Scholar 

  12. D. Klemm, B. Heublein, H. Fink, A. Bohn, Angew. Chemie Int. Ed. 44, 3358 (2005)

    Article  CAS  Google Scholar 

  13. H. Ullah, H.A. Santos, T. Khan, Cellulose 23, 2291 (2016)

    Article  CAS  Google Scholar 

  14. F. Lina, Z. Yue, Z. Jin, Y. Guang, Biomed. Eng. - Front. Challenges (InTech, 2011), pp. 250–274

  15. H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater. 17, 153 (2005)

    Article  CAS  Google Scholar 

  16. J. Shah, R. Malcolm, Brown, Appl. Microbiol. Biotechnol. 66, 352 (2005)

    Article  CAS  Google Scholar 

  17. M. Nogi, H. Yano, Adv. Mater. 20, 1849 (2008)

    Article  CAS  Google Scholar 

  18. S. Ummartyotin, J. Juntaro, M. Sain, H. Manuspiya, Ind. Crops Prod. 35, 92 (2012)

    Article  CAS  Google Scholar 

  19. A.N. Nakagaito, M. Nogi, H. Yano, MRS Bull. 35, 214 (2010)

    Article  CAS  Google Scholar 

  20. S. Purandare, E.F. Gomez, A.J. Steckl, Nanotechnology 25, 094012 (2014)

    Article  Google Scholar 

  21. E.R.P. Pinto, H.S. Barud, R.R. Silva, M. Palmieri, W.L. Polito, V.L. Calil, M. Cremona, S.J.L. Ribeiro, Y. Messaddeq, J. Mater. Chem. C 3, 11581 (2015)

    Article  CAS  Google Scholar 

  22. M. Nogi, S. Ifuku, K. Abe, K. Handa, A.N. Nakagaito, H. Yano, M. Nogi, S. Ifuku, K. Abe, Appl. Phys. Lett. 88, 133124 (2009)

    Article  Google Scholar 

  23. H.S. Barud, J.M.A. Caiut, J. Dexpert-Ghys, Y. Messaddeq, S.J.L. Ribeiro, Compos. A 43, 973 (2012)

    Article  CAS  Google Scholar 

  24. S.H. Min, C.K. Kim, D.G. Moon, Mol. Cryst. Liq. Cryst. 584, 27 (2013)

    Article  CAS  Google Scholar 

  25. S.-H. Min, D.-S. Park, C.K. Kim, Mol. Cryst. Liq. Cryst. 601, 197 (2014)

    Article  CAS  Google Scholar 

  26. L. Cruz, C. Legnani, I. Matoso, C. Ferreira, H. Moutinho, Mater. Res. Bull. 39, 993 (2004)

    Article  CAS  Google Scholar 

  27. R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta, G.P. Parisi, A. Santagata, P. Villani, Mater. Sci. Eng. C 27, 1034 (2007)

    Article  CAS  Google Scholar 

  28. K. Maki, N. Komiya, A. Suzuki, Thin Solid Films 445, 224 (2003)

    Article  CAS  Google Scholar 

  29. R. Riveros, E. Romero, G. Gordillo, Braz. J. Phys. 36, 1042 (2006)

    Article  CAS  Google Scholar 

  30. R.T.A. Machado, J. Gutierrez, A. Tercjak, E. Trovatti, F.G.M. Uahib, G. de P. Moreno, A.P. Nascimento, A.A. Berreta, S.J.L. Ribeiro, H.S. Barud, Carbohydr. Polym. 152, 841 (2016)

    Article  CAS  Google Scholar 

  31. B.G. Hyun, J. Park, M.H. Song, S.-H. Kim, S.Y. Lee, S. Ji, K. Kim, J. Kim, NPG Asia Mater. 8, e299 (2016)

    Article  Google Scholar 

  32. E. Najafabadi, Y.H. Zhou, K.A. Knauer, C. Fuentes-Hernandez, B. Kippelen, Appl. Phys. Lett. 105, 063305 (2014)

    Article  Google Scholar 

  33. H. Fukagawa, T. Shimizu, T. Kamada, S. Yui, M. Hasegawa, K. Morii, T. Yamamoto, Sci. Rep. 5, 9855 (2015)

    Article  CAS  Google Scholar 

  34. D.Y. Kim, D.W. Song, N. Chopra, P. De Somer, F. So, Adv. Mater. 22, 2260–2263 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian agencies CNPq, INEO-MCT, FAPESP, FAPERJ and FAPEMIG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Legnani.

Additional information

In memory of Marcos Costa e Silva.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legnani, C., Barud, H.S., Caiut, J.M.A. et al. Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes. J Mater Sci: Mater Electron 30, 16718–16723 (2019). https://doi.org/10.1007/s10854-019-00979-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00979-w

Navigation