Skip to main content
Log in

Microstructure and electric property of (1−x)CaBi4Ti4O15xBi4Ti3O12 ceramics with high-Curie temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-Curie temperature complex piezoelectric ceramics (1 − x)CaBi4Ti4O15xBi4Ti3O12 (short for (1 − x)CBT–xBIT) were fabricated by a solid-state reaction method. The evolution of the crystal structure and the electric property of (1 −x)CBT–xBIT ceramics were investigated. (1  − x)CBT–xBIT had an orthorhombic structure, and no impurity phases existed in. With the addition of BIT, the “CBT part” of 0.9CBT–0.1BIT ceramic had larger crystal structure distortion than CBT ceramics, especially the tilt from the c axis of the TiO6 octahedron layers. The crystal structure analysis indicated the enhanced octahedral tilt angle is beneficial to the ferroelectricicity of (1 − x)CBT–xBIT ceramics. The residual polarization Pr of (1  − x)CBT–xBIT ceramics (x = 0, 0.1, 1) were 1.97 µC/cm2, 6.33 µC/cm2 and 2.28 µC/cm2, respectively. And, the addition of the “BIT part” increased the concentration of oxygen vacancy and affected the conduction mechanism. Two anomalies (Tm1 and Tm2) existed in the temperature dependence of the dielectric behavior corresponding to the phase transition. Besides, Tm2 and d33 decreased with x increasing and Tm1 did not change markedly. Moreover, 0.9CBT–0.1BIT ceramic obtained the optimal piezoelectric constant (d33 = 15.2 pC/N) and dc resistivity (1.6×105 Ω·cm at 700 °C) compared to that (d33 = 15.2 pC/N, 3.1×104 Ω·cm at 700 °C) of CBT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.C. Subbarao, Phys. Rev. 122, 804 (1961)

    Article  Google Scholar 

  2. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971)

    Article  Google Scholar 

  3. T. Kobayashi, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 86, 012907 (2005)

    Article  Google Scholar 

  4. L. Fei, Z. Zhou, S. Hui, X. Dong, Y. Li, Mater. Lett. 156, 165 (2015)

    Article  Google Scholar 

  5. D. Peng, X. Wang, C. Xu, X. Yao, T. Sun, J. Am. Ceram. Soc. 96, 184 (2013)

    Article  Google Scholar 

  6. Y.J. Wong, J. Hassan, S.K. Chen, I. Ismail, J. Alloy. Compd. 723, 567 (2017)

    Article  Google Scholar 

  7. W. Wang, D. Shan, J. Sun, X. Mao, X. Chen, J. Appl. Phys. 103, 044102 (2008)

    Article  Google Scholar 

  8. T. Jardiel, A.C. Caballero, M. Villegas, J. Eur. Ceram. Soc. 27, 4115 (2007)

    Article  Google Scholar 

  9. D. Xin, Z. Peng, F. Huang, Q. Chen, J. Wu, Y. Wang, X. Yue, D. Xiao, J. Zhu, J. Mater. Sci. 27, 913 (2016)

    Google Scholar 

  10. Y. Chen, D. Liang, Q. Wang, J. Zhu, J. Appl. Phys. 116, 074108 (2014)

    Article  Google Scholar 

  11. H. Zhang, H. Yan, M.J. Reece, J. Appl. Phys. 108, 014109 (2010)

    Article  Google Scholar 

  12. L. Fei, Z. Zhou, S. Hui, X. Dong, Ceram. Int. 41, 9729 (2015)

    Article  Google Scholar 

  13. L. Fei, Z. Zhou, S. Hui, X. Dong, J. Mater. Sci. 26, 6843 (2015)

    Google Scholar 

  14. B. Wu, J. Ma, W. Wu, M. Chen, Ceram. Int. 44, 9168 (2018)

    Article  Google Scholar 

  15. X. Du, I.W. Chen, J. Am. Ceram. Soc. 81, 3260 (1998)

    Article  Google Scholar 

  16. J. Xing, Z. Tan, L. Xie, L. Jiang, J. Yuan, Q. Chen, J. Wu, W. Zhang, D. Xiao, J. Zhu, J. Am. Ceram. Soc. 101, 1632 (2018)

    Article  Google Scholar 

  17. R.D. Shannon, Acta. Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  18. S. Thathan, I. Mitsuru, J. Mater. Chem. 21, 10865 (2011)

    Article  Google Scholar 

  19. A. Chen, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  20. A. Frit, J.P. Mercurio, J. Alloy. Compd. 188, 27 (1992)

    Article  Google Scholar 

  21. R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid State Chem. 94, 404 (1991)

    Article  Google Scholar 

  22. S. Kumar, K.B.R. Varma, J. Phys. D: Appl. Phys. 42, 075405 (2009)

    Article  Google Scholar 

  23. Z. Peng, Q. Chen, J. Wu, D. Liu, D. Xiao, J. Zhu, J. Alloy. Compd. 541, 310 (2012)

    Article  Google Scholar 

  24. K. Srinivas, A.R. James, J. Appl. Phys. 86, 3885 (1999)

    Article  Google Scholar 

  25. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74, 1904 (1999)

    Article  Google Scholar 

  26. C. Long, H. Fan, M. Li, P. Ren, Y. Cai, CrystEngComm. 15, 10212 (2013)

    Article  Google Scholar 

  27. J. Zhang, Z. Pan, F. Guo, W. Liu, H. Ning, Y. Chen, M. Lu, B. Yang, J. Chen, S. Zhang, X. Xing, J. Rodel, W. Cao, Y. Chen, Nat. Commun. 6, 6615 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51332003) and Sichuan Science and Technology Program (2018G20140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, R., Yuan, J., Li, W. et al. Microstructure and electric property of (1−x)CaBi4Ti4O15xBi4Ti3O12 ceramics with high-Curie temperature. J Mater Sci: Mater Electron 30, 6482–6490 (2019). https://doi.org/10.1007/s10854-019-00953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00953-6

Navigation