Skip to main content
Log in

Effect of chelating agents on the surface parameters and optical constant of CZO thin films by sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

3 mol% Cu-doped ZnO (CZO) transparent p-type thin films were deposited on glass substrates by sol–gel dip coating technique, and the influence of various chelating agents such as monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) on structural, morphological, optical, and electrical properties of CZO thin films was investigated. The XRD results showed that CZO-DEA and CZO-TEA samples have hexagonal Wurtzite structure which homogenously grown in all direction while CZO-MEA thin film was highly oriented along the (002) direction. In addition, the grain size of thin films is about 16.2–19.4 nm, which the smallest grain size belongs to CZO-MEA. FESEM images showed the wrinkled like morphology of the CZO-MEA thin film consists of spherical nanograins in compared with spherical shape of other samples. The electrical measurements revealed the p-type conductivity of samples. Also, CZO-MEA sample exhibited the highest mobility and carrier concentration values of 26.2 cm2/Vs and 2.32 × 1014 cm−3, respectively. Based on optical studies, the superior optical transmittance of CZO-MEA related to the lowest roughness parameters and better growth along c-axis. Moreover, CZO-TEA thin film showed the lowest band gap (3 eV). The PL spectra showed the CZO-MEA sample has the highest visible emission. CZO-MEA thin film illustrated the more contact angle (hydrophobic behavior). Besides, the most change of contact angle observed in CZO-MEA sample under UV-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Bilgin, E. Sarica, B. Demirselcuk, S. Turkyilmaz, Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: structural, morphological, optical, electrical and magnetic investigations, J. Mater. Sci. 20 (2018), https://doi.org/10.1007/s10854-018-9855-9

  2. M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions. J. Lumin. 145, 160–166 (2014). https://doi.org/10.1016/j.jlumin.2013.06.024

    Article  Google Scholar 

  3. V. Bilgin, E. Sarica, B. Demirselcuk, S. Turkyilmaz, Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: structural, morphological, optical, electrical and magnetic investigations. J. Mater. Sci. 18(29), 15315–15320 (2017). https://doi.org/10.1007/s10854-018-8805-x

    Google Scholar 

  4. S. Horzuma, E. Torunb, T. Serina, F.M. Peeters, Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation. Phil. Mag. 17(1), 1743–1756 (2016). https://doi.org/10.1080/14786435.2016.1177224

    Article  Google Scholar 

  5. M. Shaban, A.M. ElSayed, Influences of lead and magnesium co-doping on the nanostructural, optical properties and wettability of spin coated zinc oxide films. Mat. Sci. Semicon. Proc. 39, 136–147 (2015). https://doi.org/10.1016/j.mssp.2015.0-4.008

    Article  Google Scholar 

  6. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Optical characterization of sol–gel ZnO:Al thin films. Superlattices Microstruct. 85, 101–111 (2015). https://doi.org/10.1016/j.spmi.2015.05.013

    Article  Google Scholar 

  7. T.R. Giraldi, G.V.F. Santos, V.R. Mendonca, C. Ribeiro, I.T. Weber, Effect of synthesis parameters on the structural characteristics and photocatalyticactivity of ZnO. Mater. Chem. Phys. 136, 505–511 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.018

    Article  Google Scholar 

  8. K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J. Mater. Sci. 29, 887–897 (2017). https://doi.org/10.1007/s10854-017-7985-0

    Google Scholar 

  9. I. Winer, G.E. Shter, M.M. Lahav, G.S. Grader, Effect of solvents and stabilizers on sol–gel deposition of Ga-doped zinc oxide TCO films. J. Mater. Res. 26, 1309–1315 (2011). https://doi.org/10.1557/jmr.2011.69

    Article  Google Scholar 

  10. R. Bekkari, L.D. Boyer, R. Mahiou, B. Jaber, Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Mater. Sci. Semicond. Process. 71, 181–187 (2017). https://doi.org/10.1016/j.mssp.2017.07.027

    Article  Google Scholar 

  11. S.H. Yoon, D. Liu, D. Shen, M. Park, D.J. Kim, Effect of chelating agents on the preferred orientation of ZnO films by sol-gel process. J. Mater. Sci. 43, 6177–6181 (2008). https://doi.org/10.1007/s10853-008-2929-y

    Article  Google Scholar 

  12. D.G. Ayana. V. Prusakova. C. Collini. M.V. Nardi. R. Tatti. M. Bortolotti. L. Lorenzelli. A. Chiappini. A. Chiasera. M. Ferrari. L. Lunelli. S. Dire, Sol-gel synthesis and characterization of undoped and Al-doped ZnO thin films for memristive application. AIP Adv. (2016). https://doi.org/10.1063/1.4968192

    Google Scholar 

  13. F.J. Serrao, S.M. Dharmaprakash, Structural, optical and electrical properties of sol–gel prepared Ga:ZnO thin film. Mater. Res. Innov. 20, 470–474 (2016). https://doi.org/10.1179/1433075X15Y.0000000059

    Article  Google Scholar 

  14. M. Chul Jun, S. Uk Park, J. Hyuk Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 7, 639 (2012). https://doi.org/10.1186/1556-276X-7-639

    Article  Google Scholar 

  15. L. Nulhakim, H. Makino, S. Kishimoto, J. Nomoto, T. Yamamoto, Enhancement of the hydrogen gas sensitivity by large distribution of c-axis preferred orientation in highly Ga-doped ZnO polycrystalline thin films. Mater. Sci. Semicond. Process. 68, 322–326 (2017). https://doi.org/10.1016/j.mssp.2017.06.045

    Article  Google Scholar 

  16. J. Ramesh, G. Pasupathi, R. Mariappan, V. SenthilKumar, V. Ponnuswamy, Structural and optical properties of Ni doped ZnO thin films using sol–gel dip coating technique. Optik 124, 2023–2027 (2013). https://doi.org/10.1016/j.ijleo.2012.06.035

    Article  Google Scholar 

  17. H. Yuan, M. Xu, Q.Z. Huang, Effects of pH of the precursor sol on structural and optical properties of Cu-doped ZnO thin films. J. Alloy. Compd. 616, 401–407 (2014). https://doi.org/10.1016/j.jallcom.2014.07.070

    Article  Google Scholar 

  18. T. Saidani, M. Zaabat, M.S. Aida, A. Benaboud, S. Benzitouni, A. Boudine, Influence of annealing temperature on the structural, morphological and optical properties of Cu doped ZnO thin films deposited by the sol–gel method. Superlattices Microstruct. 75, 47–53 (2014). https://doi.org/10.1016/j.spmi.2014.07.015

    Article  Google Scholar 

  19. A.R. Nimbalkar, M.G. Patil, Synthesis of highly selective and sensitive Cu-doped ZnO thin film sensor for detection of H2S gas. Mater. Sci. Semicond. Process. 71, 332–341 (2017). https://doi.org/10.1016/j.mssp.2017.08.022

    Article  Google Scholar 

  20. S. Yang, Y. Zhang, D. Mo, Spectroscopic ellipsometry studies of sol-gel-derived Cu-doped ZnO thin films. Thin Solid Films 571, 605–608 (2014). https://doi.org/10.1016/j.tsf.2014.02.097

    Article  Google Scholar 

  21. K. Joshi, M. Rawat, S.K. Gautam, R.G. Singh, R.C. Ramola, F. Singh Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloy. Compd. 680, 252–258 (2016). https://doi.org/10.1016/j.jallcom.2016.04.093

    Article  Google Scholar 

  22. N.H. Hashim, S. Subramani, M. Devarajan, A.R. Ibrahim, Structural and surface characterization of undoped ZnO and Cu doped ZnO using sol–gel spin coating method. J. Mater. Sci. 27, 3520–3530 (2015). https://doi.org/10.1007/s10854-015-4187-5

    Google Scholar 

  23. S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet,, Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 1234 (2008). https://doi.org/10.1016/j.saa.2008.03.032

    Article  Google Scholar 

  24. K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon, The effect of aminoalcohols (MEA, DEA and TEA) on morphological control of nanocrystalline ZnO powders and its optical properties. J. Phys. Chem. Solids 71, 730–734 (2010). https://doi.org/10.1016/j.jpcs.2010.01.008

    Article  Google Scholar 

  25. P.H. Vajargah, H. Abdizadeh, R. Ebrahimifard, M.R. Golobostanfard, Sol–gel derived ZnO thin films: Effect of amino-additives. Appl. Surf. Sci. 285, 732–743 (2013). https://doi.org/10.1016/j.apsusc.2013.08.118

    Article  Google Scholar 

  26. K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for ntype ZnO: what do the emission spectra reveal, RSC 5, 23540–23547 (2015). https://doi.org/10.1039/C5RA00355E.

    Google Scholar 

  27. V. Mușat, A. Tabacaru, B. Vasile. V. A. Surdu. Size-dependent photoluminescence of zinc oxide quantum dots through organosilane functionalization. RSC 4, 63128–63136 (2014). https://doi.org/10.1039/C4RA10851E.

    Google Scholar 

  28. J. Chauhan, N. Shrivastav, A. Dugaya, D. Pandey, Synthesis and Characterization of Ni and Cu Doped ZnO. J. Nanomed. Nanotechnol. (2017). https://doi.org/10.4172/2157-7439.1000429

    Google Scholar 

  29. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012). https://doi.org/10.1016/j.optmat.2012.06.004

    Article  Google Scholar 

  30. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon, 3, e00285 (2017), https://doi.org/10.1016/j.heliyon.2017.e00285

    Article  Google Scholar 

  31. L.E. Mir, F. Ghribi, M. Hajiri, Z. Ben Ayadi, K. Djessas, M. Cubukcu, H.J. Bardeleben, Multifunctional ZnO:V thin films deposited by rf-magnetron sputtering from aerogel nanopowder target material. Thin Solid Films 519, 5787–5791 (2011). https://doi.org/10.1016/j.tsf.2010.12.198

    Article  Google Scholar 

  32. R. Vinodkumar, K.J. Lethy, P.R. Arunkumar, R. Renju, N.Venugopalan Krishnan, Pillai, Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin films. Mater. Chem. Phys. 121, 406–413 (2010). https://doi.org/10.1016/j.matchemphys.2010.01.004

    Article  Google Scholar 

  33. R. Kh. Sh Sendi. Mahmud, Stress control in ZnO nanoparticle-based discs via high-oxygen thermal annealing at various temperatures. J. Phys. Sci. 24, 1–15 (2013)

    Google Scholar 

  34. J. Chen, D. Chen, J. He, S. Zhang, Z. Chen, The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films. Appl. Surf. Sci. 255, 9413–9419 (2009). https://doi.org/10.1016/j.apsusc.2009.07.044

    Article  Google Scholar 

  35. Z. Bazhan, F.E. Ghodsi, J. Mazloom, The surface wettability and improved electrochemical performance of nanostructured CoxFe3–xO4 thin film. Surf. Coat. Technol. 309, 554–562 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.024

    Article  Google Scholar 

  36. J.B. Miller, H.J. Hsieh, B.H. Howard, E. Broitman, Microstructural evolution of sol–gel derived ZnO thin films. Thin Solid Films 518, 6792–6798 (2010). https://doi.org/10.1016/j.tsf.2010.06.032

    Article  Google Scholar 

  37. Glossary of surface texture parameters (2014) Michigan metrology. http://www.michmet.com. Accessed 14 Jan 2018

  38. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. (1983), https://doi.org/10.1088/00223735/16/12/023

    Google Scholar 

  39. I. Chambouleyron, J.M. Martinez, Estimation of optical constants of thin films using unconstrained optimization. J. Comput. Phys. 151, 862–880 (1999). https://doi.org/10.1006/jcph.1999.6224

    Article  Google Scholar 

  40. F.E. Ghodsi, F.Z. Tepehan, Heat treatment effects on the optical properties of sol-gel Ta2O5 thin films. Sol. Energy Mater. Sol. Cells 59(4), 367–375 (1999). https://doi.org/10.1016/S0927-0248(99)00056-2

    Article  Google Scholar 

  41. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  Google Scholar 

  42. W.E. Mahmoud, F. Al-Marzouki, S. Al-Ameer, F. Al-Hazmi, Synthesis and characterization of one-dimensional vertically aligned Sb-doped ZnO nanowires. J. Appl. Crystallogr. 45, 182–185 (2012). https://doi.org/10.1107/S0021889812001665

    Article  Google Scholar 

  43. A. Monemdjou, F.E. Ghodsi, J. Mazloom, The effects of surface morphology on optical and electrical properties of nanostructured AZO thin films: fractal and phase imaging analysis. Superlattices Microstruct. 74, 19–33 (2014). https://doi.org/10.1016/j.spmi.2014.06.002

    Article  Google Scholar 

  44. S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. (2012). https://doi.org/10.1186/1556-276X-7-470

    Google Scholar 

  45. G. Zeng, Y. Duan, S. Li, X. Yang, W.Cai Xu, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. J. Adv. Funct. Mater. 20, 561–572 (2010). https://doi.org/10.1002/adfm.200901884

    Article  Google Scholar 

  46. R. Bekkaria, L. laanaba, D. Boyerb, R. Mahioub, B. Jaberc, Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Mater. Sci. Semicond. Process. 71, 181–187 (2017). https://doi.org/10.1016/j.mssp.2017.07.027

    Article  Google Scholar 

  47. K. Bhavsar, D. Ross, R. Prabhu, P. Pollard, LED-controlled tuning of ZnO nanowires’ wettability for biosensing applications. J. Nano Rev. (2015). https://doi.org/10.3402/nr.v6.26711

    Google Scholar 

  48. E.L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, C. Fotakis, Reversible photoinduced Wettability Transition of Hierarchical ZnO Structures. J. Phys. Chem. 113, 2891–2895 (2009). https://doi.org/10.1021/jp8085057

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Guilan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinmohammadi, M., Ghodsi, F.E. & Mazloom, J. Effect of chelating agents on the surface parameters and optical constant of CZO thin films by sol–gel process. J Mater Sci: Mater Electron 30, 5947–5958 (2019). https://doi.org/10.1007/s10854-019-00894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00894-0

Navigation