Skip to main content
Log in

BaZrO3 (BZO) nanoparticles as effective pinning centers for YBa2Cu3O7 − δ (YBCO) superconducting thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In-field pinning enhancement for high temperature YBCO superconducting thin film is one of the most significant issue towards future high field applications. Various pinning nanostructures have been designed to achieve better superconducting performance. In this work, BaZrO3 (BZO) has been introduced into YBCO for pinning enhancement. Small BZO nanoparticles with diameter of ~ 5 nm have been observed in the YBCO matrix with high film quality. The BZO-YBCO film deposited at 840 °C exhibits the highest transition temperature of 90 K. These small nanoparticles can provide effective pinning centers for the superconducting property enhancement of YBCO. By comparing the critical current density (Jc) performance of YBCO films, with or without incorporating BZO nanoparticles, 840 °C deposited BZO-YBCO exhibits obvious higher Jc values of 7.8 MA/cm2, 26.5 MA/cm2 and 64.5 MA/cm2 at the measured temperatures of 65 K, 40 K and 5 K, respectively. The results indicate an effective approach to achieve enhanced in-field performance of YBCO, by introducing small BZO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.K. Wu et al., Phys. Rev. Lett. 589, 908–910 (1987)

    Article  Google Scholar 

  2. S.R. Foltyn et al., Nat. Mater. 6, 631–642 (2007)

    Article  Google Scholar 

  3. D. Christem, Nat. Mater 3, 421–422 (2004)

    Article  Google Scholar 

  4. T. Aytug et al., Supercond. Sci. Technol. 23, 014005 (2010)

    Article  Google Scholar 

  5. V. Selvamanickam, Y. Xie, J. Reeves, Y. Chen, MRS Bull 29, 579 (2004)

    Article  Google Scholar 

  6. M. Ann, P. Sebastian et al., IEEE Trans. Appl. Supercond. 27(4), 7500805 (2009)

    Google Scholar 

  7. J. Huang et al., IEEE Trans. Appl. Supercond. 25(3), 7500404 (2015)

    Google Scholar 

  8. B. Blagoev et al., J. Phys. 223, 012015 (2010)

    Google Scholar 

  9. Y. Nakamura et al., IEEE Trans. Appl. Supercond 15(2), 3028–3030 (2005)

    Article  Google Scholar 

  10. A. Goyal, M.P. Paranthaman, U. Schoop, MRS Bull. 29(8), 552–561 (2004)

    Article  Google Scholar 

  11. V. Matias et al., Supercond. Sci. Technol. 23, 014018 (2010)

    Article  Google Scholar 

  12. M.S. Bhuiyan et al., Supercond. Sci. Technol. 16, 1305 (2003)

    Article  Google Scholar 

  13. T. Caroff et al., Supercond. Sci. Technol. 21, 075007 (2008)

    Article  Google Scholar 

  14. T. Haugan et al., Nature 430, 7002 (2004)

    Article  Google Scholar 

  15. F. Wang, J. Mater. Sci. 27, 7084–7088 (2016)

    Google Scholar 

  16. A.K. Jha et al., Supercond. Sci. Technol. 27, 025009 (2014)

    Article  Google Scholar 

  17. A. Ichinose et al., Supercond. Sci. Technol. 20, 12 (2007)

    Article  Google Scholar 

  18. J. Huang et al., Ceram. Int. 42, 12202–12209 (2016)

    Article  Google Scholar 

  19. S.H. Wee, Supercond. Sci. Technol. 23, 1 (2010)

    Article  Google Scholar 

  20. T. Horide et al., Supercond. Sci. Technol. 26,075019(2013)

  21. H. Zhou et al., Supercond. Sci. Technol. 22, 085013 (2009)

    Article  Google Scholar 

  22. C. Stuart et al., Physica 470, S223–S224 (2010)

    Google Scholar 

  23. T. Petrisor et al., J. Appl. Phys. 112, 053919 (2012)

    Article  Google Scholar 

  24. J. Huang et al., J. Appl. Phys. 115, 123902 (2014)

    Article  Google Scholar 

  25. J. Huang, H. Wang, Supercond. Sci. Technol. 30,114004(2017)

  26. J.L. MacManus-Driscoll et al., Nat. Mater. 3, 439–443 (2004)

    Article  Google Scholar 

  27. S.H. Wee et al., Sci. Rep. 3, 2310 (2013)

    Article  Google Scholar 

  28. A. Pomar et al., IEEE Trans. Appl. Supercond 19(3), 3258–3261 (2009)

    Article  Google Scholar 

  29. J. Huang et al., IEEE Trans. Appl. Supercond. 27(4), 8000305 (2017)

    Google Scholar 

  30. I. Birlik et al., J. Phys. 234, 012004 (2010)

    Google Scholar 

  31. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)

    Article  Google Scholar 

Download references

Funding

This study was supported by jiangsu vocational college teachers advanced research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Tian, H. BaZrO3 (BZO) nanoparticles as effective pinning centers for YBa2Cu3O7 − δ (YBCO) superconducting thin films. J Mater Sci: Mater Electron 30, 4137–4143 (2019). https://doi.org/10.1007/s10854-019-00705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00705-6

Navigation