Skip to main content
Log in

Effect of PVP on fabrication of Cu nanoparticles using an electrical wire explosion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu nanoparticles have several advantages such as their high electrical and thermal conductivity and low cost. Electrical wire explosion (EWE) method is one of the methods used to fabricate metal nanoparticles. The advantages of this technique are the high purity of the nanoparticles, ability to employ this technique in large-scale manufacturing, and high energy efficiency. In previous research, polyvinylpyrrolidone (PVP) was shown to prevent the agglomeration of metal nanoparticles. However, the effect of PVP on Cu nanoparticle synthesis using the EWE method has not been investigated. This study describes the effects of PVP on the size and shape of Cu nanoparticles made by the EWE method. Experiments were carried out with Cu/PVP colloids that were exploded by a current pulse voltage within a few microseconds. The experiment was conducted with various contents and molecular weights of PVP. Fabricated Cu nanoparticles were identified with field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The size of the Cu nanoparticles was measured by the direct light scattering method. The smallest nanoparticles were about 21 nm and obtained when PVP with a molecular weight of 360,000 and content of 1.0 wt% was used. The shape of the nanoparticles changed from anisotropic to isotropic with increasing content and molecular weight of PVP. The electrical resistivity of printed Cu patterns decreased as the Cu nanoparticle get smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Perelaer, A.W.M. de Laat, C.E. Hendriksa, U.S. Schubert, J. Mater. Chem. 18, 3209 (2008)

    Article  Google Scholar 

  2. C.K. Kim, G.J. Lee, M.K. Lee, C.K. Rhee, Powder Technol. 263, 1 (2014)

    Article  Google Scholar 

  3. H.H. Nersisyan, J.H. Lee, H.T. Son, C.W. Won, D.Y. Maeng, Mater. Res. Bull. 38, 949 (2003)

    Article  Google Scholar 

  4. H.S. Kim, S.R. Dhage, D.E. Shim, H.T. Hahn, Appl. Phys. A 97, 791 (2009)

    Article  Google Scholar 

  5. P. Pulkkinen, J. Shan, K. Leppa¨nen, A. Ka¨nsa¨koski, A. Laiho, M. Ja¨rn, H. Tenhu, Appl. Mater. Sci. 1, 519 (2009)

    Article  Google Scholar 

  6. K.H. Jung, K.S. Kim, B.G. Park, S.B. Jung, J. Nanosci. Nanotechnol. 14, 9493 (2014)

    Article  Google Scholar 

  7. Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Colloids Surf. A 284, 364 (2006)

    Article  Google Scholar 

  8. Y. Kobayashi, S. Ishida, K. Ihara, Y. Yasuda, T. Morita, S. Yamada, Colloid Polym. Sci. 287, 877 (2009)

    Article  Google Scholar 

  9. V.S. Giri, R. Sarathi, S.R. Chakravarthy, C. Venkataseshaiah, Mater. Lett. 58, 1047 (2004)

    Article  Google Scholar 

  10. R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, Mater. Charact. 58, 148 (2007)

    Article  Google Scholar 

  11. R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, A. Sharma, K.V. Nagesh, J. Alloys Compd. 475, 658 (2009)

    Article  Google Scholar 

  12. T.K. Sindhu, R. Sarathi, S.R. Chakravarthy, Nanotechnology 19, 025703 (2008)

    Article  Google Scholar 

  13. Y.E. Krasik, A. Fedotov, D. Sheftman, S. Efimov, A. Sayapin, V.T. Gurovich, D. Veksler, G. Bazalitski, S. Gleizer, A. Grinenko, V.I. Oreshkin, Plasma Sources Sci. Technol. 19, 034020 (2010)

    Article  Google Scholar 

  14. Y.W. C.Cho, C. Choi, G.W. Kang, Lee, Appl. Phys. Lett. 91, 141501 (2007)

    Article  Google Scholar 

  15. R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, Mater. Lett. 61, 1823 (2007)

    Article  Google Scholar 

  16. A. Grinenko, A. Sayapin, V. Tz. S. Gurovich, J. Efimov, Ya.E. Felsteiner, Krasik, J. Appl. Phys. 97, 023303 (2005)

    Article  Google Scholar 

  17. A. Grinenko, Ya.E. Krasik, S. Efimov, A. Fedotov, V. Tz. Gurovich, Phys. Plasmas 13, 042701 (2006)

    Article  Google Scholar 

  18. Y. Jianfeng, Z. Guisheng, H. Anming, Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011)

    Article  Google Scholar 

  19. Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei, G.A. Somorjai, J. Phys. Chem. B 110, 23052 (2006)

    Article  Google Scholar 

  20. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105 (1996)

    Article  Google Scholar 

  21. A.J. Paine, W. Luymes, J. McNulty, Macromolecules 23, 3104 (1990)

    Article  Google Scholar 

  22. S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, J. Moon, Adv. Funct. Mater. 18, 679 (2008)

    Article  Google Scholar 

  23. V.S. Sedoi, Y.F. Ivanov, Nanotechnology 19, 145710 (2008)

    Article  Google Scholar 

  24. I.P. Santos, L.M.L. Marza´n, Langmuir 18, 2888 (2002)

    Article  Google Scholar 

  25. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44, 17883 (2015)

    Article  Google Scholar 

  26. S. Krishnan, A.S.M.A. Haseeb, M.R. Johan, Ceram. Int. 40, 9907 (2014)

    Article  Google Scholar 

  27. S. Krishnan, A.S.M.A. Haseeb, M.R. Johan, J. Nanopart. Res. 15, 1410 (2013)

    Article  Google Scholar 

  28. P. Zeng, S. Zajac, P.C. Clapp, J.A. Rifkin, Mater. Sci. Eng. A 252, 301 (1998)

    Article  Google Scholar 

  29. J.K. Mackenzie, R. Shuttleworth, Proc. Phys. Soc. B 62, 833 (1949)

    Article  Google Scholar 

  30. P. Song, D. Wen, J. Nanopart. Res. 12, 823 (2010)

    Article  Google Scholar 

  31. J.C. Wang, Metall. Trans. A 21, 305 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (Grant No. 20174030201800). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2017R1D1A1B03035402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Boo Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CJ., Jung, KH., Park, BG. et al. Effect of PVP on fabrication of Cu nanoparticles using an electrical wire explosion method. J Mater Sci: Mater Electron 30, 4079–4084 (2019). https://doi.org/10.1007/s10854-019-00696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00696-4

Navigation