Skip to main content
Log in

Ferroelectric, dielectric, ferromagnetic and magnetoelectric properties of the multiferroic heteroepitaxial NiFe2O4/Ba0.85Ca0.15Ti0.9Zr0.1O3 composite thin films deposited via PLD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterostructured NiFe2O4/Ba0.85Ca0.15Ti0.9Zr0.1O3 (NFO/BCZT) composite thin films grown epitaxially on (100)-SrRuO3/SrTiO3 substrate (SrRuO3 is used as the bottom electrode) were prepared via pulse laser deposition. Phase formation of the tetragonal BCZT and cubic NFO were confirmed in X-ray diffractograms. A low RMS roughness and a smaller grain size were calculated from the surface microtopography. Physical properties testing indicated that such multiferroic heteroepitaxial composite thin films exhibit simultaneously excellent ferroelectric, dielectric, ferromagnetic properties, as well as conspicuous magnetoelectric effects. The saturated and remnant polarizations of NFO/BCZT film are about 35.79 and 12.43 μC cm−2 respectively, the magnetoelectric coupling coefficient reaches up to about 93 mV cm−1 Oe−1 at a bias magnetic field of 800 Oe, which is expected a bright application prospect in new storage technology and the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.J. Folen, G.T. Rado, E.W. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6, 607–608 (1961)

    Article  CAS  Google Scholar 

  2. S.C. Yang, A. Kumar, V. Petkov, S. Priya, Room temperature magnetoelectric coupling in single phase BaTiO3–BiFeO3 system. J. Appl. Phys. 113, 144101 (2013)

    Article  Google Scholar 

  3. J.M. Caicedo, J.A. Zapata, M.E. Gomez, P. Prieto, Magnetoelectric coeffcient in BiFeO3 compounds. J. Appl. Phys. 103, 07E306 (2008)

    Article  Google Scholar 

  4. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)

    Article  CAS  Google Scholar 

  5. J. Ma, J.M. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  6. M.N. Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 32164 (2016). https://doi.org/10.1038/srep32164

    Article  CAS  Google Scholar 

  7. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, Muliferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Article  Google Scholar 

  8. C. Deng, Y. Zhang, J. Ma, Y. Lin, C.W. Nan, Magnetic-electric properties of epitaxial multiferroic NiFe2O4–BaTiO3 heterostructure. J. Appl. Phys. 102, 074114 (2007)

    Article  Google Scholar 

  9. J.F. Scott, Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012)

    Article  CAS  Google Scholar 

  10. H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multi-layer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  CAS  Google Scholar 

  11. A. Reyes-Montero, L. Pardo, R. López-Juárez, A.M. González, M.P. Cruz, M.E. Villafuerte-Castrejón, Lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 piezoelectric ceramics processed below 1300 °C. J. Alloy. Compd. 584, 28–33 (2014)

    Article  CAS  Google Scholar 

  12. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1–xZrx)O3 ceramics. J. Appl. Phys. 92(3), 1489 (2002)

    Article  CAS  Google Scholar 

  13. Z.X. Sun, Y.P. Pu, Z.J. Dong, Y. Hu, X.Y. Liu, P.K. Wang, Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3-xLa ceramics prepared by hydrothermal method. Mater. Lett. 118, 1–4 (2014)

    Article  Google Scholar 

  14. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2010)

    Article  Google Scholar 

  15. W. Wang, L.D. Wang, W.L. .Lia, D. Xu, Y.F. Hou, W.P. Cao, Y. Feng, W.D. Fei, Piezoelectric properties of BaTiO3-CaTiO3-BaZrO3 ceramics with compositions near the morphotropic phase boundary. Ceram. Int. 40, 14907–14912 (2014)

    Article  CAS  Google Scholar 

  16. M. Acosta, N. Novak, W. Jo, J.Rödel, Relationship between electromechanical properties and phase diagram in the Ba (Zr0.2Ti0.8) O3-x (Ba0.7Ca0.3) TiO3 lead-free piezoceramic. Acta. Mater. 80, 48–55 (2014)

    Article  CAS  Google Scholar 

  17. M.V. Reddy, J. Paul, N.S. Sowmya, A. Srinivas, D. Das, Magneto-electric properties of in-situ prepared xCoFe2O4-(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 particulate composites. Ceram. Int. 42, 17827–17833 (2016)

    Article  CAS  Google Scholar 

  18. Y. Wang, Y.P. Pu, Y.C. Tian, X. Li, Z. Wang, Y. Shi, J.T. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)

    Article  CAS  Google Scholar 

  19. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric and magnetoelectric studies of [0.5Ba (Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)

    Article  CAS  Google Scholar 

  20. S.Z. Lu, X.D. Qi, Epitaxial growth of Ni0.5Zn0.5Fe2O4+BiFeO3 composite films on SrTiO3 substrates. J. Alloy.Compd. 708, 194–201 (2017)

    Article  CAS  Google Scholar 

  21. D. Cao, N. Wang, J.F. Wang, Y. Zhou, Z.W. Jiao, M.Q. Cai, W.Y. Hu, Role of electrodes materials in determining the interfacial and magnetoelectric properties in BaTiO3-based multiferroic tunnel junctions. Eur. Phys. J. B 90, 188 (2017)

    Article  Google Scholar 

  22. J.G. Wu, J. Wang, Effects of SrRuO3 buffer layer thickness on multiferroic Bi0.90La0.10Fe0.95Mn0.05O3 thin films. J. Appl. Phys. 106, 054115 (2009)

    Article  Google Scholar 

  23. L.X. Chen, H. Liu, S. Liu, C.M. Li, Y.C. Wang, K. An, C.Y. Hua, J.L. Liu, J.J. Wei, L.F. Hei, F.X. Lv, Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering. Appl. Surf. Sci. 431, 152–159 (2018)

    Article  CAS  Google Scholar 

  24. J.Y. Chen, Y.L. Bai, C.H. Nie, S.F. Zhao, Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films. J. Alloys Compd. 663, 480–486 (2016)

    Article  CAS  Google Scholar 

  25. Z.H. Tang, M.H. Tang, X.S. Lv, H.Q. Cai, Y.G. Xiao, C.P. Cheng, Y.C. Zhou, J. He, Enhanced magnetoelectric effect in La0.67Sr0.33MnO3/PbZr0.52Ti0.48O3 multi- ferroic nanocomposite films with a SrRuO3 buffer layer. J. Appl. Phys. 113, 164106 (2013)

    Article  Google Scholar 

  26. Z.H. Tang, M.H. Tang, X.S. Lv, Y.G. Xiao, H.Q. Cai, B. Jiang, C.P. Cheng, L.Q. Li, Y.C. Zhou, Microstructure, magnetoelectric properties and leakage mecha-nisms of La0.7Ca0.3MnO3/Bi0.15Nd0.85TiO3 composite thin films. Solid State Sci. 17, 35–39 (2013)

    Article  CAS  Google Scholar 

  27. L. Pintilie, L.I. Vrejoiu, D. Hesse et al., Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr, Ti)O3 films. Phys. Rev. B75, 104103 (2007)

    Article  Google Scholar 

  28. H. Yang, H. Wang, L. He, L. Shui, X. Yao, Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108(7), 074105 (2010)

    Article  Google Scholar 

  29. P.A. Jadhav, M.B. Shelar, B.K. Chougule, Magnetoelectric effect in three phase y(Ni0.5Cu0.2Zn0.3Fe2O4)+ (1-y) (50% BaTiO3+50% PZT) ME composites. J. Alloy.Compd. 479(1–2), 385–389 (2009)

    Article  CAS  Google Scholar 

  30. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations. J. Alloys Compd. 698, 341–356 (2017)

    Article  Google Scholar 

  31. J. Van den Boomgaard, D.R. Terrell, R.A.J. Born et al., An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9(10), 1705–1709 (1974)

    Article  Google Scholar 

  32. J. Van den Boomgaard, A. Van Run, J.V. Suchtelen, Magneto- electricity in piezoelectric-magnetoelectritive composites. Ferroelectrics 10, 295–298 (1976)

    Article  Google Scholar 

  33. J. Van den Boomgaard, R.A.J. Born, A sintered magnetoelecctric composite materials BaTiO3-Ni (Co, Mn) Fe2O4. J. Mater. Sci. 13(7), 1538–1548 (1978)

    Article  Google Scholar 

  34. C.E. Ciomaga, M. Airimiaei, V. Nica et al., Preparation and magnetoelectric properties of NiFe2O4-PZT composites obtained in-situ by gel-combustion method. J. Eur. Ceram. Soc. 32(12), 3325–3337 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of China (51762010, 51462003), Science Research Fund of Guizhou Province, China (2016-7217, 2016-7219), Youth Science and Technology Talent growth Project of Education Department of Guizhou Provincial (2016-139),The 2014Doctor Foundation of Guizhou Normal University of China(Wei jun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Wu, D., Guo, K. et al. Ferroelectric, dielectric, ferromagnetic and magnetoelectric properties of the multiferroic heteroepitaxial NiFe2O4/Ba0.85Ca0.15Ti0.9Zr0.1O3 composite thin films deposited via PLD. J Mater Sci: Mater Electron 29, 17333–17340 (2018). https://doi.org/10.1007/s10854-018-9828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9828-z

Navigation