Skip to main content
Log in

Photocatalytic properties of plasma-synthesized zinc oxide and tin-doped zinc oxide (TZO) nanopowders and their applications as transparent conducting films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conducting zinc oxide and tin-doped zinc oxide (TZO) nanopowders were synthesized for the first time using a novel plasma-assisted chemical vapor synthesis route. The injected precursors were volatized completely and rapidly followed by chemical reactions and subsequent quenching to yield fine nanopowder. The amount of tin nitrate was varied to obtain 3 and 5 at.% Sn designated as TZO1 and TZO2 respectively. XRD diffraction peaks of TZO1 nanoparticles indicated the presence of wurtzite structure without any tin oxide peaks except in TZO2 sample and SEM micrographs revealed spherical particles. The nanosized powders would make an excellent material for use as photocatalyst due to high surface to volume ratio. Optical examinations indicated that the band gap in TZO1 was redshifted to 3.16 eV from 3.22 eV in undoped ZnO nanoparticles. The photocatalytic properties of ZnO and TZO nanopowders were investigated using the methylene blue dye degradation under UV light irradiation and kinetic analyses indicated that the photodegradation of methylene blue followed pseudo-first order kinetic model using Langmuir–Hinshelwood mechanism. Furthermore, the TZO1 nanoparticles exhibited superior photocatalytic activity compared with ZnO and the improvement was ascribed to increase in specific surface area and enhanced oxygen vacancies as revealed from the XPS O 1s and PL spectra. Deposited films showed a hexagonal wurtzite structure and exhibited a c-axis preferred orientation perpendicular to the substrate. A minimum resistivity of 1.4 × 10− 3 Ωcm was obtained at lower doping amount of 3 at.% Sn as in TZO1 film and all the films exhibited an average transmission of 80% indicating their suitability as a promising material in optoelectronic applications. Optical constants of the films were determined, which varied with doping amount. The photo-current properties of ZnO and TZO films were investigated and only TZO1 film showed photo response property when irradiated with UV lamp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.S.Y. Jayathilake, T.A.N. Peiris, J.S. Sagu, D.B. Potter, K.G.U. Wijayantha, C.J. Carmalt, D.J. Southee, ACS Sustain. Chem. Eng. 5, 4820 (2017)

    Article  Google Scholar 

  2. T. Shiosaki, M. Adachi, A. Kawabata, Thin Solid Films 96, 129 (1982)

    Article  Google Scholar 

  3. C.-T. Chen, F.-C. Hsu, Y.-M. Sung, H.-C. Liao, W.-C. Yen, W.-F. Su, Y.-F. Chen, Sol. Energy Mater. Sol. Cells 107, 69 (2012)

    Article  Google Scholar 

  4. S. Xue, X. Zu, W. Zheng, M. Chen, X. Xiang, Phys. B 382, 201 (2006)

    Article  Google Scholar 

  5. C. Benouis, M. Benhaliliba, A.S. Juarez, M. Aida, F. Chami, F. Yakuphanoglu, J. Alloys Compd. 490, 62 (2010)

    Article  Google Scholar 

  6. T.T. Werner, G.M. Mudd, S.M. Jowitt, Appl. Earth Sci. 124, 213 (2015)

    Article  Google Scholar 

  7. R. Deng, X. Zhang, J. Lumin. 128, 1442 (2008)

    Article  Google Scholar 

  8. M. Tsega, D.-H. Kuo, Solid State Commun. 164, 42 (2013)

    Article  Google Scholar 

  9. J.-H. Lee, B.-O. Park, Thin Solid Films 426, 94 (2003)

    Article  Google Scholar 

  10. Z. Heinrich, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  11. A.G. Prado, J.D. Torres, E.A. Faria, S.Ä.Ì.C. Dias, J. Colloid Interface Sci. 277, 43 (2004)

    Article  Google Scholar 

  12. S. Senthilvelan, V. Chandraboss, B. Karthikeyan, L. Natanapatham, M. Murugavelu, Mater. Sci. Semicond. Process. 16, 185 (2013)

    Article  Google Scholar 

  13. M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Dyes Pigm. 77, 327 (2008)

    Article  Google Scholar 

  14. J. Jing, J. Li, J. Feng, W. Li, W.W. Yu, Chem. Eng. J. 219, 355 (2013)

    Article  Google Scholar 

  15. K.M. Reza, A. Kurny, F. Gulshan, Appl. Water Sci. 7, 1569 (2015)

    Article  Google Scholar 

  16. A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Indian J. Mater. Sci. 2015, 1 (2015)

    Article  Google Scholar 

  17. H.Y. Sohn, Chemical Vapor Synthesis of Inorganic Nanopowders (Nova Science Publishers, New York, 2012)

    Google Scholar 

  18. A. Murali, H.Y. Sohn, Mater. Res. Express 5, 065045 (2018)

    Article  Google Scholar 

  19. C.U. Bang, D.H. Shin, Y.C. Hong, H.S. Uhm, IEEE Conference Record—Abstracts. 2005 IEEE International Conference on Plasma Science (2005)

  20. G. Buhler, D. Tholmann, C. Feldmann, Adv. Mater. 19, 2224 (2007)

    Article  Google Scholar 

  21. J. Ederth, P. Heszler, A. Hultaker, G. Niklasson, C. Granqvist, Thin Solid Films 445, 199 (2003)

    Article  Google Scholar 

  22. C. Wu, L. Shen, H. Yu, Q. Huang, Y.C. Zhang, Mater. Res. Bull. 46, 1107 (2011)

    Article  Google Scholar 

  23. L.-P. Wang, F. Zhang, S. Chen, Z.-H. Bai, Int. J. Mine. Metall. Mater. 24, 455 (2017)

    Article  Google Scholar 

  24. M.A. Javid, M. Rafi, I. Ali, F. Hussain, M. Imran, A. Nasir, Mater. Sci. 34, 741–746 (2016)

    Google Scholar 

  25. P. Junlabhut, W. Mekprasart, R. Noonuruk, K. Chongsri, W. Pecharapa, Energy Procedia 56, 560 (2014)

    Article  Google Scholar 

  26. M. Verma, P.K. Dwivedi, B. Das, J. Exp. Nanosci. 10, 438 (2013)

    Article  Google Scholar 

  27. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, J. Phys. D 37, 2274 (2004)

    Article  Google Scholar 

  28. V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, J. Mater. Sci.: Mater. Electron. 23, 451 (2011)

    Google Scholar 

  29. F. Bedia, A. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Energy Procedia 74, 539 (2015)

    Article  Google Scholar 

  30. M. Nasir, M. Hannas, M.H. Mamat, M. Rusop, Adv. Mater. Res. 1109, 577 (2015)

    Article  Google Scholar 

  31. T. Ryu, Y.J. Choi, S. Hwang, H.Y. Sohn, I. Kim, J. Am. Ceram. Soc. 93, 3130 (2010)

    Article  Google Scholar 

  32. B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751 (2014)

    Article  Google Scholar 

  33. . D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Reading, 1967)

    Google Scholar 

  34. O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009)

    Article  Google Scholar 

  35. A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J.C. Bernede, S. Ouro-Djobo, M. Gbagba, Phys. Status Solidi A 201, 1528 (2004)

    Article  Google Scholar 

  36. T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)

    Article  Google Scholar 

  37. J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard, J. Appl. Phys. 99, 08M118 (2006)

    Article  Google Scholar 

  38. S. Hamrit, K. Djessas, N. Brihi, B. Viallet, K. Medjnoun, S. Grillo, Ceram. Int. 42, 16212 (2016)

    Article  Google Scholar 

  39. P. Sangeetha, V. Sasirekha, V. Ramakrishnan, J. Raman Spectrosc. 42, 1634 (2011)

    Article  Google Scholar 

  40. H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, Appl. Surf. Sci. 258, 8564 (2012)

    Article  Google Scholar 

  41. D. Choi, Y.S. Kim, Y. Son, RSC Adv. 4, 50975 (2014)

    Article  Google Scholar 

  42. K.J. Chen, F.Y. Hung, Y.T. Chen, S.J. Chang, Z.S. Hu, Mater. Trans. 51, 1340 (2010)

    Article  Google Scholar 

  43. A. Bougrine, A.E. Hichou, M. Addou, J. Ebothe, A. Kachouane, M. Troyon, Mater. Chem. Phys. 80, 438 (2003)

    Article  Google Scholar 

  44. M. Gao, X. Wu, J. Liu, W. Liu, Appl.Surf. Sci. 257, 6919 (2011)

    Article  Google Scholar 

  45. B.-Y. Oh, M.-C. Jeong, J.-M. Myoung, App. Surf. Sci. 253, 7157 (2007)

    Article  Google Scholar 

  46. X.-J. Yang, X.-Y. Miao, X.-L. Xu, C.-M. Xu, J. Xu, H.-T. Liu, Opt. Mater. 27, 1602 (2005)

    Article  Google Scholar 

  47. C.-A. Tseng, J.-C. Lin, W.-H. Weng, C.-C. Lin, Jpn. J. Appl. Phys. 52, 025801 (2013)

    Article  Google Scholar 

  48. P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, C.-M. Wang, Appl, Phys. A 90, 317 (2007)

    Article  Google Scholar 

  49. P. Zu, Z.K. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 459 (1997)

    Article  Google Scholar 

  50. S.-S. Lo, D. Huang, C.H. Tu, C.-H. Hou, C.-C. Chen, J. Phys. D 42, 095420 (2009)

    Article  Google Scholar 

  51. Y.J. Jang, C. Simer, T. Ohm, Mater. Res. Bull. 41, 67 (2006)

    Article  Google Scholar 

  52. T.N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, G. Nagaraju, D. Kumar, S. Sarakar, B. Anandakumar, G. Chandrappa, V. Reddy, J. Dupont, Mater. Sci. Semicond. Process. 26, 7 (2014)

    Article  Google Scholar 

  53. B.M. Rajbongshi, A. Ramchiary, S.K. Samdarshi, Mater. Lett. 134, 11 (2014)

    Article  Google Scholar 

  54. M. Khairy, W. Zakaria, Egypt. J. Pet. 23, 419 (2014)

    Article  Google Scholar 

  55. S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, J. Ind. Eng. Chem. 20, 1602 (2014)

    Article  Google Scholar 

  56. C. Wang, D. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, App. Surf. Sci. 325, 112 (2015)

    Article  Google Scholar 

  57. B. Choudhury, P. Chetri, A. Choudhury, RSC Adv. 4, 4663 (2014)

    Article  Google Scholar 

  58. A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)

    Article  Google Scholar 

  59. J. Shao, Y.Q. Shen, J. Sun, N. Xu, D. Yu, Y.F. Lu, J.D. Wu, J. Vac. Sci. Technol. B 26, 214 (2008)

    Article  Google Scholar 

  60. W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669 (2009)

    Article  Google Scholar 

  61. A. Sreedhar, J.H. Kwon, J. Yi, J.S. Gwag, Mater. Res. Bull. 95, 451 (2017)

    Article  Google Scholar 

  62. C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, C.-K. Lin, Thin Solid Films 517, 1032 (2008)

    Article  Google Scholar 

  63. F. Abeles, Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  64. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci.: Mater. Electron. 19, 704 (2007)

    Google Scholar 

  65. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Opt. Mater. 32, 696 (2010)

    Article  Google Scholar 

  66. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

Download references

Funding

Funding was provided by NSF/U.S.-Egypt Joint Science and Technology Board, Grant No. (IIA-1445577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Murali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, A., Sohn, H.Y. Photocatalytic properties of plasma-synthesized zinc oxide and tin-doped zinc oxide (TZO) nanopowders and their applications as transparent conducting films. J Mater Sci: Mater Electron 29, 14945–14959 (2018). https://doi.org/10.1007/s10854-018-9633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9633-8

Navigation