Skip to main content
Log in

Synthesis of graphene/ZnO nanoflowers and electrochemical determination of levodopa in the presence of uric acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoflowers (ZnONFs) were synthesized by a simple hydrothermal method. Then, ZnONFs suspension was sprayed onto the indium tin oxide coated glass. Finally, graphene was deposited on the surface of ZnONFs (graphene/ZnONFs) by chemical vapor deposition, which is used to electrochemically determine levodopa in the presence of uric acid. The results show that the length and diameter of ZnONFs are ∼ 2.5 µm and 50 nm, respectively. Graphene with multi-layers and some defects are deposited on the surface of ZnONFs. The sensitivity and measured limit of detection of the graphene/ZnONFs for levodopa are 0.32 µA µM−1 and 1 µM in the range of 1–60 µM, respectively. The graphene/ZnONFs also show good selectivity, repeatability and stability for the determination of levodopa. The proposed electrode is also successfully used to determine levodopa in human urine samples and it is potential for use in clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.B. Raoof, R. Ojani, M. Amiri-Aref, M. Baghayeri, Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens. Actuators B 166, 508–518 (2012)

    Article  Google Scholar 

  2. A. Babaei, A.R. Taheri, I.K. Farahani, Nanomolar simultaneous determination of levodopa and melatonin at a new cobalt hydroxide nanoparticles and multi-walled carbon nanotubes composite modified carbon ionic liquid electrode. Sens. Actuators B 183, 265–272 (2013)

    Article  Google Scholar 

  3. M.F. Abdel-Ghany, L.A. Hussein, M.F. Ayad, Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture. Spectrochim. Acta A 171, 236–245 (2016)

    Article  Google Scholar 

  4. G.Z. Tsogas, D.V. Stergiou, A.G. Vlessidis, N.P. Evmiridis, Development of a sensitive flow injection-chemiluminescence detection method for the indirect determination of propranolol. Anal. Chim. Acta 541, 149–155 (2005)

    Article  Google Scholar 

  5. R.O. Vilhena, F.L. Pontes, B.M. Marson, A new HILIC-MS/MS method for the simultaneous analysis of carbidopa, levodopa, and its metabolites in human plasma. J. Chromatogr. B 967, 41–52 (2014)

    Article  Google Scholar 

  6. S.K. Arya, P. Kongsuphol, K.P. Mi, Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens. Bioelectron. 92, 542–549 (2017)

    Article  Google Scholar 

  7. K. Hassan, G.S. Chung, Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators B 239, 824–833 (2017)

    Article  Google Scholar 

  8. R. Ahmad, N. Tripathy, N.K. Jang, G. Khang, Y.B. Hahn, Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B 206, 146–151 (2015)

    Article  Google Scholar 

  9. E. Zehani, S. Hassani, A. Lusson, J. Vigneron, A. Etcheberry, Reconstruction of perfect ZnO nanowires facets with high optical quality. Appl. Surf. Sci. 411, 374–378 (2017)

    Article  Google Scholar 

  10. Y. Li, A. Paulsen, I. Yamada, Y. Koide, J.J. Delaunay, Bascule nanobridges self-assembled with ZnO nanowires as double schottky barrier UV switches. Nanotechnology 21, 502–513 (2010)

    Google Scholar 

  11. W. Guo, L.X. Qin, H. Wang, Z. PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties. Physica E 73, 163–168 (2015)

    Article  Google Scholar 

  12. A.R. Marlinda, A. Pandikumar, N. Yusoff, N.M. Huang, H.N. Lim, Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 182, 1113–1122 (2015)

    Article  Google Scholar 

  13. S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012)

    Article  Google Scholar 

  14. K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small 12, 245–251 (2016)

    Article  Google Scholar 

  15. C.Y. Lee, K.S. Park, Y.K. Jung, H.G. Park, A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens. Bioelectron. 93, 293–297 (2017)

    Article  Google Scholar 

  16. Y.M. Lei, M.M. Xiao, Y.T. Li, L. Xu, H. Zhang, Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 91, 1–7 (2017)

    Article  Google Scholar 

  17. X. Zhang, J. Dong, X. Qian, C. Zhao, One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sens. Actuators B 221, 528–536 (2015)

    Article  Google Scholar 

  18. G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)

    Article  Google Scholar 

  19. C. Holroyd, A.B. Horn, C. Casiraghi, S.P.K. Koehler, Vibrational fingerprints of residual polymer on transferred CVD-graphene. Carbon 117, 473–475 (2017)

    Article  Google Scholar 

  20. M.H. Yang, J.M. Jeong, S.H. Yun, High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos. Sci. Technol. 121, 123–128 (2015)

    Article  Google Scholar 

  21. K. Varmira, G. Mohammadi, M. Mahmoudi et al. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 183,183–202 (2018)

    Article  Google Scholar 

  22. H.Y. Yue, B. Wang, S. Huang et al., Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics 23(12), 1–8 (2017)

    Article  Google Scholar 

  23. J. Ghodsi, A.A. Rafati, Y. Shoja, First report on hemoglobin electrostatic immobilization on WO3 nanoparticles: application in the simultaneous determination of levodopa, uric acid, and folic acid. Anal. Bioanal. Chem. 408, 3899–3909 (2016)

    Article  Google Scholar 

  24. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 770, 23–32 (2016)

    Article  Google Scholar 

  25. E. Eksin, E. Zor, A. Erdem, H. Bingol, Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosens. Bioelectron. 92, 207–214 (2017)

    Article  Google Scholar 

  26. H. Yaghoubian, H. Karimi-Maleh, M.A. Khalilzadeh, F. Karimi, Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode. Int. J. Electrochem. Sci. 4, 993–1003 (2009)

    Google Scholar 

  27. M.A. Sheikh-Mohseni, S. Pirsa, Nanostructured conducting polymer/copper oxide as a modifier for fabrication of l-dopa and uric acid electrochemical sensor. Electroanalysis 28, 2075–2080 (2016)

    Article  Google Scholar 

  28. B. Rezaei, L. Shamsghahfarokhi, E. Havakeshian, A.A. Ensafi, An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158, 42–50 (2016)

    Article  Google Scholar 

  29. A. Babaei, M. Babazadeh, A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23, 1726–1735 (2011)

    Article  Google Scholar 

  30. M. Baghayeri, M. Namadchian, Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: application to the analysis of some real samples. Electrochim. Acta 108, 22–31 (2013)

    Article  Google Scholar 

  31. A. Afkhami, F. Kafrashi, T. Madrakian, Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21, 2937–2947 (2015)

    Article  Google Scholar 

  32. A. Martín, J. Hernández-Ferrer, A. Escarpa, Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim. Acta 172, 2–6 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the innovative talent fund of Harbin city (2016RAQXJ185) and Science Funds for the Young Innovative Talents of HUST (201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H.Y., Wang, B., Huang, S. et al. Synthesis of graphene/ZnO nanoflowers and electrochemical determination of levodopa in the presence of uric acid. J Mater Sci: Mater Electron 29, 14918–14926 (2018). https://doi.org/10.1007/s10854-018-9630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9630-y

Navigation