Skip to main content

Advertisement

Log in

Structural properties of InGaN/GaN/Al2O3 structure from reciprocal space mapping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

By using metal organic chemical vapor deposition technique, InGaN/GaN solar cell (SC) structure is deposited over sapphire (Al2O3) wafer as GaN buffer and GaN epitaxial layers. Structural properties of InGaN/GaN/Al2O3 SC structure is investigated by using high resolution X-ray diffraction technique dependent on In content. By using reciprocal space mapping, reciprocal space data are converted to w–θ data with a software. These w–θ data and full width at half maximum data are used for calculating lattice parameters. When compared with w–θ measurements in literature it is seen that especially a- lattice parameter is found very near to universal value from RSM. It is calculated as 3.2650 nm for sample A (S.A) GaN layer and 3.2570 nm for sample B (S.B) GaN layer on (105) asymmetric plane. Strain and stress calculations are made by using these lattice parameters. Strain and stress are calculated as 0.02363 and 8.6051 GPa for S.A GaN layer respectively. Other results are given in tables in the results and discussion section of this article. Edge, screw and mixed type dislocations are calculated as mosaic defects. All these calculations are made for two samples on (002) symmetric and (105) asymmetric planes. As a result it is seen that measurements by using RSM give more sensitive results. a- lattice parameter calculated with this technique is the best indicator of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Strite, H. Morkoc, Gan, Ain, and Inn: a review. J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992). https://doi.org/10.1116/1.585897

    Article  Google Scholar 

  2. J.W. Orton, C.T. Foxon, Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 61(1), 1 (1998). https://doi.org/10.1088/0034-4885/61/1/001

    Article  Google Scholar 

  3. B.G. Streetman, Elements of Solid State Electronics, in Prentice Hall Solid State Physics Series (Texas University, Austin, 1998), p. 0133356035

    Google Scholar 

  4. Y.D. Qi et al., Comparison of blue and green InGaN/GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1866634

    Google Scholar 

  5. K.S. Ramaiah et al., A comparative study of blue, green and yellow light emitting diode structures grown by metal organic chemical vapor deposition. Solid-State Electron. 50(2), 119–124 (2006). https://doi.org/10.1016/j.sse.2005.10.028

    Article  Google Scholar 

  6. T.K. Kim et al., Influence of growth parameters on the properties of InGaN/GaN multiple quantum well grown by metalorganic chemical vapor deposition. Curr. Appl. Phys. 7(5), 469–473 (2007). https://doi.org/10.1063/1.4841575

    Article  Google Scholar 

  7. Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Japn. J. Appl. Phys. 1 42(5a), 2549–2559 (2003)

    Article  Google Scholar 

  8. J. Singh, Electronic and Optoelectronic Properties of semiconductor Structures (Cambridge University Press, New York, 2003)

    Book  Google Scholar 

  9. G. Bauer, W. Richter, Optical Characterization of Epitaxial Semiconductor Layers (Springer, Berlin, 1996). ISBN 978-3-642-79678-4

    Book  Google Scholar 

  10. D.K. Bower, B.K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor & Francis Group, London, 2002). ISBN 9780850667585

    Google Scholar 

  11. M.K. Ozturk et al., Structural analysis of an InGaN/GaN based light emitting diode by X-ray diffraction. J. Mater. Sci. Mater. Electron. 21(2), 185–191 (2010)

    Article  Google Scholar 

  12. M.K. Ozturk et al., Strain-stress analysis of AlGaN/GaN heterostructures with and without an AlN buffer and interlayer. Strain 47, 19–27 (2011). https://doi.org/10.1111/j.1475-1305.2009.00730.x

    Article  Google Scholar 

  13. C. Kisielowski, Strain in GaN thin films and heterostructures. Semiconductors Semimetals 57, 275–317 (1999)

    Article  Google Scholar 

  14. Y. Bas, In x Ga 1–x N (x = 0.075; 0.090; 0.100) Mavi LED’lerin Mikroyapısal Kusurlarının Ters Örgü Uzay Haritası İle İncelenmesi (Gazi University, Ankara, 2015)

    Google Scholar 

  15. M.A. Moram, M.E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72(3), 036502 (2009)

    Article  Google Scholar 

  16. M. Schuster et al., Determination of the chemical composition of distorted InGaN GaN heterostructures from X-ray diffraction data. J. Phys. D 32(10a), A56–A60 (1999)

    Article  Google Scholar 

  17. B.G. Streetmann, Solid State Electronics Devices (Prentice-Hall, Inc., Upper Saddle River, 1995)

    Google Scholar 

  18. S. Nakamura, Gan growth using gan buffer layer. Japn. J. Appl. Phys. 2 30(10a), L1705–L1707 (1991)

    Article  Google Scholar 

  19. S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 2002)

    Google Scholar 

  20. R. Chierchia et al., Microstructure of heteroepitaxial GaN revealed by X-ray diffraction. J. Appl. Phys. 93(11), 8918–8925 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kursat Bilgili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, A.K., Akpinar, Ö., Kurtulus, G. et al. Structural properties of InGaN/GaN/Al2O3 structure from reciprocal space mapping. J Mater Sci: Mater Electron 29, 12373–12380 (2018). https://doi.org/10.1007/s10854-018-9351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9351-2

Navigation